Update on the F₂ experiment

Abel Sun Carnegie Mellon University

Hall C Collaboration Meeting, Jan 28-29, 2020, Jefferson Lab

Outline

Physics Motivations Analysis

- Constraints for pdf global fits \bullet
- Quark-hadron duality ullet
- Moments
- Resonance and deep inelastic \bullet scattering modeling

- Timing cuts ullet
- Calibrations \bullet
- Detector efficiency studies lacksquare
- Background: \bullet pion contamination, charge symmetric background
- Other corrections: radiative effects

- **Preliminary Results** •
 - Cross sections
 - D/H ratios ullet
 - F₂ structure functions

Constraints for PDFs

etc., with particular focus on the large-x region

• We measured both H and D cross sections (free protons and bound neutrons)

• CTEQ-JLab (CJ) performs global QCD fits of PDFs from data including deep-inelastic leptonnucleon scattering, proton-proton collisions (lepton pair creation, W-boson and jet production),

Quark-hadron duality

- It's a fundamental property of nucleon structure -

• Structure functions in resonance region on average behave like structure functions in DIS regime.

Quark-Hadron Duality Studies

- Define duality intervals

Region	1 st	2 nd	3rd	4 th	DIS	gl
Wmin	1.3	1.9	2.5	3.1	3.9	
W _{max}	1.9	2.5	3.1	3.9	4.5	4

- How well resonance data average to the scaling curve?
- Calculate moments:

$$\int_{x_{min}}^{x_{max}} F^{data}(x, Q^2) dx / \int_{x_{min}}^{x_{max}} F^{param.}(x, Q^2) dx / \int_{x_{min}}^{x_{max}}$$

What scaling curve and scaling variable should we use?

lata only

Quark-Hadron Duality Studies: Example

S. Malace, et al., Phys.Rev. C80 (2009) 035207

Quark-Hadron Duality Studies: Example

• New duality averaging method to include resonance region data in global PDF fits

from Eric Christy

- valleys

Non-Singlet Moments as Tests of LQCD

• Test LQCD calculations by comparing non-singlet moments

work by Ibrahim Albayrak

Resonance / DIS Modeling

• A physics driven global fit to inclusive cross section is very valuable: dilution factors in spin structure functions, physics of nucleon resonances Proton Fit

radiative and bin-centering corrections, rates, moments of structure functions and duality studies,

- Provides constraints to larger Q² – up to 16 GeV² for both proton and deuteron fit
- Provides a complete data set (proton and deuteron) for a precise neutron extraction

71% of total data were taken by SHMS

Hall C Spectrometers

Run in spring 2018 Beam energy: 10.6 GeV ullet

E12-10-002: Measurements of H(e,e') and D(e,e')

E12-10-002: Measurements of H(e,e') and D(e,e')

	M	S	

Angle	Momentum(GeV/c)
21	3.3, 4.0, 4.5, 5.1, 5.7
59	1.05, 1.18, 1.35, 1.50

- 59 deg: pushed to higher Q², up to 16 GeV²
- 21 deg: to cross calibrate with SHMS data
- Larger angle has lower rate. Ample amount of time was given for data taking.

Analysis Flow and Status

1. Timing Cuts (\checkmark)

2. Calibration (\checkmark)

- BCM Deb's talk
- Hodoscope
- Drift Chamber
- Calorimeter
- Cherenkov

- Tracking Efficiency Study
- Trigger Efficiency Study
- Computer Dead Time
- Calorimeter and Cherenkov Cut Efficiency
- Pion Contamination

- 3. Efficiency Study in progress
- 4. Charge Symmetric **Background - in progress**
- 5. Acceptance Study understand via Monte Carlo
- 6. Radiative corrections calculated using existed model
- 7. Cross Section Calculation extracted

Achieved 100 % statistical goal for all the kinematics.

Cherenkov calibration

Calorimeter calibration

Tracking Efficiency Study

X Stub Criteria (cm)

Charge Symmetric Background

The positron cross-section is parametrized as $\frac{d\sigma}{d\Omega dE'} = e^{p_0}(e^{p_1(E-E')}+1)$

Angle	Momentum(GeV/c)
21	2.7
29	2.0, 2.7
39	1.3, 1.8

Preliminary Results

Cross Section Extraction

$$Y_{DATA}(E',\theta) = \left(\frac{d^2\sigma}{d\Omega dE'}\right)$$

$$Y_{MC}(E',\theta) = \left(\frac{d^2\sigma}{d\Omega dE'}\right)_{a}$$

$$\frac{d^2\sigma}{d\Omega dE'} = Y_{DATA}(E',\theta) / [(\Delta \Omega \Delta E') * A_{DA}]$$

$$\frac{d^2\sigma}{d\Omega dE'} = \sigma_{model} * [Y_{DATA}(E',\theta)/$$

solid angle luminosity $\frac{d^{2}\sigma}{\Omega dE'})_{DATA}[(\Delta\Omega\Delta E') * A_{DATA}(E',\theta) * L]$ acceptance $\frac{d^{2}\sigma}{\Omega dE'})_{model}[(\Delta\Omega\Delta E') * A_{MC}(E',\theta) * L]$

 $D_{ATA}(E',\theta) * L$] **Acceptance correction method**

$(Y_{MC}(E', \theta))$ Monte Carlo ratio method

Cross Section Extraction - Monte Carlo Ratio Method

Preliminary H(e,e') Cross Sections - Monte Carlo Ratio Method

- Overlap between momentum settings ->We understand acceptance fairly well.
- Bodek model is used (solid curve)

Preliminary D(e,e') Cross Sections - Monte Carlo Ratio Method

- Overlap between momentum settings looks pretty good. ->We understand acceptance fairly well.
- Bodek model is used (solid curve) (Only statistical errors shown)

Preliminary σ_D/σ_H Ratios

Preliminary F₂

$$\frac{d^2\sigma}{d\Omega dE'} = \sigma_{Mott}(\frac{2}{M}F_1(x,Q^2)tan^2\frac{\theta}{2} + \frac{1}{\nu}F_2(x,Q^2)) \qquad \qquad \frac{d^2\sigma}{d\Omega dE'} = \Gamma(\sigma_T(x,Q^2) + \epsilon\sigma_L(x,Q^2))$$

$$F_2 = \frac{\sigma}{\sigma_{Mott}}\nu\epsilon\frac{1+R}{1+\epsilon R} \quad , \text{ where } R \equiv \frac{\sigma_L}{\sigma_T}, \ \epsilon = [1+2(1+\frac{\nu^2}{Q^2})tan^2\frac{\theta}{2}]^{-1}$$

- We are looking forward to a varied physics output: PDF extraction, quark-hadron duality studies, resonance and DIS modeling...

Summary

• Preliminary H(e,e') and D(e,e') cross sections and D/H ratios look promising.

Thanks for listening!