A₁ⁿ Updates and Plans

Mingyu Chen University of Virginia January 29, 2020

Outline:

- 1. Introduction for A_1^n Experiment
- 2. Experimental Setup
- 3. Polarized ³He Target
- 4. Kinematics and Expected Results
- 5. A_{el} Online Results

Longitudinal Virtual Photon Asymmetry A₁

- $Q^2 = 4$ -momentum of virtual photon squared
- v = Energy transfer
- θ = Scattering angle
- $x = \frac{Q^2}{2M\nu}$ = Fraction of nucleon momentum carried by the struck quark

Parallel spins: $\sigma_{_{3/2}}$

Anti-parallel spins: $\sigma_{\!\scriptscriptstyle 1/2}$

$$A_1 = \frac{1}{(E+E')D'} [(E-E'\cos\theta)A_{\parallel} - \frac{E'\sin\theta}{\cos\phi}A_{\perp}]$$

 Angular kinematics for polarized electron scattering

Page:2

 $D' = \frac{(1 - \epsilon)(2 - y)}{y[1 + \epsilon R]}$

Hall C Collaboration 2020

01/29/2020

 $=\frac{O_{\downarrow\uparrow}}{O_{\downarrow\uparrow}} + O_{\uparrow\uparrow}$

Goals for A₁ⁿ Experiment

- Precisely measure the neutron spin asymmetry A_1^n in the far valence domain (0.61<x<0.77) for the first time.
- Explore the Q^2 dependence of A_1^n with large x value.
- After combining with proton data (CLAS12), extract polarized to unpolarized parton distribution function (PDF) ratios $\Delta u/u$ ($\Delta d/d$) for large x region.
- Give more insights on understanding the spin structure of neutron.

Experimental Setup

Detectors:

- High Momentum Spectrometer (HMS)
- Super HMS (SHMS)

Electron Beam:

- 1-pass (elastic, Δ(1232))
- 5-pass beam (DIS, resonance)
- Beam polarization: 85%
 (2% uncertainty by Moller Polarimeter)
- Circular beam raster with 2.5mm radius
- < 50 ppm charge asymmetry (average over ~ 1–2 hr run)

Polarized ³He target:

- ³He production cell (40cm)
- 55–60% polarization without beam
- 30 uA beam current (doubles performance compare to 6 GeV era)
- 3% uncertainty for polarimetry

PhD students:

A1n: Mingyu Chen (UVa), Melanie Rehfuss (Temple U) Target: Chris Jantzi (UVa)

(Spokespeople: X. Zheng, G. Cates, JP Chen, Z-E Meziani)

01/29/2020

Hall C Collaboration 2020

Polarized ³He Target

(see Junhao's talk for more info)

- Free Neutron mean life: 880.2 s
- Neutron carries the majority of the ³He nucleus polarization

12 GeV era target cell performance:

Beam Current: 30uA

Expected in beam polarization: 50%

Luminosity: ~ 2.2x10³⁶ cm⁻²S⁻¹ Convection Cell

2. Spin Exchange

01/29/2020

Hall C Collaboration 2020

Kinematics and Beam time

	Kine		e	Spec		E_b	E_p	$\mid \theta$	beam ti	me	
Completed 1-pass						GeV	GeV	(0)	(hours	$\mathbf{s})$	
commissioning		$\Delta(1232)$		SHMS	2.183	-1.79736	8.5	4.0			
		Elast	ic	SI	HMS	2.183	-2.12860	8.5	8.0		
	Kine	Spec	$ E_l$	6	E_p	$\mid \theta \mid$	e^- product	ion	e^+ prod.	Tot. Time	
			Ge	$V \mid$	GeV	(0)	(hours)		(hours)	(hours)	
						· · · · · · · · · · · · · · · · · · ·	DIS				
Dngoing 5-pass DIS production 🧲 runs. Achieved	1	HMS	10.	5	6.00	11.7	84.0		0.0	84.0	
	3	HMS	10.	5	2.90	30.0	88.0		0.0	88.0	
	4	HMS	10.	5	3.50	30.0	511.0		0.0	511.0	
	B	SHMS	10.	5	3.40	30.0	511.0		4.0	515.0	
-18% of the	\mathbf{C}	SHMS	10.	5	2.60	30.0	88.0		4.0	92.0	
charge goal for nighest x setting.	Resonances										
	D	SHMS	10.	5	6.90	11.0	84.0		0.0	84.0	
-											

- Longitudinal asymmetry of elastic scattering and transverse asymmetry of $\Delta(1232)$ are used to check $P_b P_t$ and other systematics.
- The SHMS setting B and HMS setting 4 are used to determine physics asymmetry of ³He at high x, high Q².
- The SHMS setting C and HMS setting 3 are used to cover the medium x with high Q² region in order to improve previous 6 GeV results.
- HMS kine 1 measures the physics asymmetry of ³He at low Q².
- SHMS kine D resonance measurements will provide data needed for radiative corrections.

Expected Values of ΔA_1^n for 5-pass Runs

x_{bj}	ΔA_1^n (stat.)	ΔA_1^n (stat.)	ΔA_1^n (stat.)	ΔA_1^n (syst.)	ΔA_1^n (total.)
	Low Q^2	High Q^2	two Q^2 combined		
0.25	0.0027	0.0000	0.0027	0.0133	0.0136
0.30	0.0029	0.0000	0.0029	0.0130	0.0133
0.35	0.0038	0.0544	0.0038	0.0131	0.0137
0.40	0.0056	0.0243	0.0055	0.0135	0.0146
0.45	0.0094	0.0200	0.0085	0.0141	0.0165
0.50	0.0181	0.0191	0.0131	0.0149	0.0199
0.55	0.0606	0.0162	0.0156	0.0162	0.0225
0.60	0.0000	0.0145	0.0145	0.0179	0.0231
0.65	0.0000	0.0157	0.0157	0.0206	0.0260
0.71	0.0000	0.0186	0.0186	0.0257	0.0317
0.77	0.0000	0.0414	0.0414	0.0485	0.0638

Table 1: Statistical and systematic uncertainties for DIS data at different x and Q^2

x_{bj}	ΔA_1^n (stat.)	$\Delta A_1^n(\text{syst.})$	ΔA_1^n (total.)
0.40	0.0335	0.0134	0.0361
0.45	0.0144	0.0138	0.0199
0.50	0.0121	0.0148	0.0191
0.55	0.0130	0.0156	0.0203
0.60	0.0134	0.0175	0.0220
0.65	0.0214	0.0222	0.0308
0.71	0.0271	0.0291	0.0398
0.77	0.0364	0.0376	0.0523
0.83	0.0212	0.0512	0.0555
0.89	0.0958	0.1083	0.1446

Table 2: Statistical and systematic uncertainties for Resonance data at different x and Q^2

01/29/2020

Typical Elastic Run Online Results

(count number of elastic events from SHMS)

Hall C Collaboration 2020

A_{el} Online Results

(no sign correction)

Online Results: Elastic Longitudinal Asymmetry (no sign corr)

• Raw elastic asymmetry for all SHMS runs.

01/29/2020

Hall C Collaboration 2020

A_{el} Online Results

Online Results: Elastic Longitudinal Asymmetry

SHMS Run Number

- For "IHWP OUT", multiply all asymmetries with sign=-1 to account IHWP flip.
- The combined asymmetry for SHMS runs is 0.60%, with uncertainty 0.020%. Then $\Delta A/A=3.4\%$.
- The expected physics asymmetry is 2.6%, if we use $85\% P_b$, $50\% P_t$, $0.9 f_{N2}$ and $0.457 f_{QE}$ to calculate the expected raw asymmetry be about 0.45%.

(need further correction for QE asymmetry)

$$A_{physics} = \frac{A_{raw}}{P_b P_t f_{N2} f_{QE}}$$

01/29/2020

Hall C Collaboration 2020

Backup Slides

01/29/2020

Hall C Collaboration 2020

QE/el Ratio (Hclog from Chao Peng)

QE/el ratio estimation

- Used the <u>saGDH</u> data (2.2 GeV @ 9 degree) to estimate the Quasi-elastic contribution (with scale and shift)
- Subtract the <u>saGDH</u> data and fit it with a Gaussian peak
- With this estimation, the El/QE ratio at the peak (W = 0.905) is about 1.151
- The El/QE ratio within (0.87 < W < 0.92) is 0.841
- The El/QE ratio within 3 sigma of the el peak (0.884 < W < 0.926) is 0.562
- For El/QE ratio be 0.841, the QE dilution factor:

$$f_{QE} = \frac{0.841}{1.841} = 0.457$$

Hall C Collaboration 2020

Page:12

01/29/2020

Predictions for A_1 and $\Delta q/q$ at Large x

- In the far valence domain, different models give different predictions.
- For pQCD and many other models, the far valence domain is the only place to make absolute predictions.

Model	F_{2}^{n}/F_{2}^{p}	d/u	∆ u/u	Δ d/d	A_1^n	A_1^p
SU(6) = SU3 flavor + SU2 spin	2/3	1/2	2/3	-1/3	0	5/9
Valence Quark + Hyperfine	1/4	0	1	-1/3	1	1
pQCD + HHC	3/7	1/5	1	1	1	1
DSE-1	0.49	0.28	0.65	-0.26	0.17	0.59
DSE-2	0.41	0.18	0.88	-0.33	0.34	0.88

• Predictions for x=1 value for various models. From Craig D. Robert et al.

01/29/2020

Previous Results for A¹ and PDF

01/29/2020

Hall C Collaboration 2020