Update on KaonLT Experiment

Richard Trotta, Tanja Horn, Garth Huber, Pete Markowitz,

Stephen Kay, Vijay Kumar, Vladimir Berdnikov, Ali Usman, and the KaonLT collaboration

L/T separated data for verifying reaction mechanism

- Jlab 6 GeV data demonstrated the technique of measuring the Q² dependence of L/T separated cross sections at fixed x/t to test QCD Factorization
 - Consistent with expected scaling of $\sigma_{\rm L}$ to leading order $\rm Q^{-6}$ but with relatively large uncertainties
- Separated cross sections over a large range in Q² are essential for:
 - Testing factorization and understanding dynamical effects in both Q² and -t kinematics
 - Interpreting non-perturbative contributions in experimentally accessible kinematics

Meson Form Factors

- Pion and kaon form factors are of special interest in hadron structure studies
 - Pion lightest QCD quark system and crucial in understanding dynamic generation of mass
 - Kaon next simplest system containing strangeness
- Clearest case for studying transition from non-perturbative to perturbative regions
- Jlab 6 GeV data showed FF differs from hard QCD calculation
 - Evaluated with asymptotic valence-quark Distribution Amplitude (DA), but large uncertainties
- 12 GeV FF extraction data require:
 - measurements over a range of t, which allow for interpretation of kaon pole contribution

M. Carmignotto et al., PhysRevC **97**(2018)025204 F. Gao et al., Phys. Rev. D 96 (2017) no. 3, 034024

Experimental Determination of the π/K + Form Factor

- At larger Q², F²_{π+} must be measured indirectly using the "pion cloud" of the proton via the p(e,e'π⁺)n process
 - At small –t, the pion pole process dominates σ_1
 - In the Born term model, $F_{\pi^+}^2$ appears as

$$\frac{d\sigma_L}{dt} \propto \frac{-t}{(t-m_\pi^2)} g_{\pi NN}^2(t) Q^2 F_\pi^2(Q^2,t)$$

Requirements:

- \circ Full L/T separation of the cross section isolation of σ_{I}
- Selection of the pion pole process
- Extraction of the form factor using a model
- Validation of the technique model dependent checks

_{ه (ط}وع) Fit using measured ε and φ dependence

50 100 150 200 250

300 350

Review E12-09-011 (KaonLT) Goals

- Q² dependence will allow studying the scaling behavior of the separated cross sections
 - First cross section data for Q² scaling tests with kaons
 - Highest Q² for L/T separated kaon electroproduction cross section
 - First separated kaon cross section measurement above W=2.2 GeV
- t-dependence allows for detailed studies of the reaction mechanism
 - Contributes to understanding of the non-pole contributions, which should reduce the model dependence
 - Bonus: if warranted by data, extract the kaon form factor

Kaon LT - Data Collected

 The p(e, e'K⁺)Λ,Σ⁰ experiment ran in Hall C at Jefferson Lab over the fall 2018 and spring 2019.

E (GeV)	Q ² (GeV ²)	W (GeV)	x	ε _{high} /ε _{low}
10.6/8.2	5.5	3.02	0.40	0.53/0.18
10.6/8.2	4.4	2.74	0.40	0.72/0.48
10.6/8.2	3.0	3.14	0.25	0.67/0.39
10.6/6.2	3.0	2.32	0.40	0.88/0.57
10.6/6.2	2.115	2.95	0.21	0.79/0.25
4.9/3.8	0.5	2.40	0.09	0.70/0.45

Experimental Details

- Hall C: k_e=3.8, 4.9, 6.4, 8.5, 10.6 GeV
- SHMS for kaon detection :
 - \circ angles, 6 30 deg
 - o momenta, 2.7 6.8 GeV/c
- HMS for electron detection :
 - angles,10.7 31.7 deg
 - o momenta, 0.86 5.1 GeV/c
- Particle identification:
 - Dedicated Aerogel Cherenkov detector for kaon/proton separation
 - Four refractive indices to cover the dynamic range required by experiments
 - Heavy gas Cherenkov detector for kaon/pion separation

n	π _{thr} (GeV/c)	K _{thr} (GeV/c)	P _{thr} (GeV/c)
1.030	0.57	2.00	3.80
1.020	0.67	2.46	4.67
1.015	0.81	2.84	5.40
1.011	0.94	3.32	6.31

Analysis Phases

- 1. Calibrations 🗸
 - Calorimeter, aerogel, HG cer, HMS cer, DC, Quartz plan of hodo
 - Assure we are replaying to optimize our physics settings
- 2. Efficiencies and offsets Current Phase
 - Luminosity, elastics, Heeps, etc.
- 3. First iteration of cross section
 - Bring everything together
- 4. Fine tune
 - Fine tune values to minimize systematics
- 5. Repeat previous step
 - Repeat until acceptable cross sections are reached
- 6. Possible attempt at form factor extraction
 - Fit the data to a model and iterate

Phase 1: Timing Windows

- Applying cuts should be done only once reference time cuts are properly chosen.
 - See Carlos Yero paper for more info: <u>https://hallcweb.jlab.org/doc-private/ShowDocument?docid=1028</u>
- TDC coincidence spectra are the outputs from the L1ACC pre-triggers. The cuts are applied to the raw TDC spectra first.
- Remove all cuts to the raw spectra to see the entire raw spectrum including background
- Then subtract the background surrounding the peaks in order to clean the spectrum up a bit.

Phase 1: Detector Calibrations

- The online calibrations of the HMS cherenkov, SHMS HGCer, aerogel, and HODO were determined to be satisfactory for our current analysis.
- Future calibrations will be completed on run by run basis

4500

4000F

3500

2500

2000

1000E

SHMS Hodoscope Beta w/ Tracking

pHod_Beta

Entries

Mean Std Dev

Phase 1: Drift Chamber Calibrations

- Calibrating the chambers in each spectrometer is identical.
- Performance of the drift chambers is very sensitive to the gas mix within the chamber.
 - This gas mix is in turn dependent upon environmental conditions
- Purpose of the drift chamber calibration is to find the correct parameters to convert the recorded drift times to drift distances for each wire
- For the KaonLT and PionLT experiments, it was decided that a new calibration would be produced for every experimental shift
 - roughly every 8 hours

Phase 1: Calorimeter Calibrations

- Purpose of the calibration is to correctly convert the detected ADC signal from the calorimeter into an equivalent energy.
- Calibration script utilises electron events to perform the calibration.
- Many iterations were performed for all adequate runs
- There were tiny wiggles that can be seen in most runs
 - \circ $\,$ Vardan and others are aware. This is an ongoing issue.

Phase 2.1: Importance of Luminosity Runs

Singles E Singles (GeV)	Q ² (GeV ²)	W (GeV)	x	Target	Current (uA)	٤ _{high}	٤ _{low}
10.6	5.5	3.02	0.40	LH2,C	5,15,30,45,50,55	0.53	
10.6	3.0	3.14	0.25	LH2,C	50,70	0.67	
6.2	3.0	2.32	0.40	LH2,C	5,15,30,50,65,70		0.57

Careful evaluations of the systematic uncertainties is important due to the $1/\varepsilon$ amplification in the $\sigma_{\rm L}$ extraction

Spectrometer acceptance, kinematics , and efficiencies are the primary contributors

Phase 2.1: Importance of Luminosity Runs

(GeV)	Q ² (GeV ²)	W (GeV)	x	Target	Current (uA)	٤ _{high}	٤ _{low}
10.6	5.5	3.02	0.40	LH2,C	5,15,30,45,50,55	0.53	
8.2	5.5	3.02	0.40	LH2,C	10,25,40,45,60		0.18
8.2	4.4	2.74	0.40	LH2,C	5,15,30,45,50,65		0.48
10.6	3.0	3.14	0.25	LH2,C	50,65,70	0.67	

- Singles: 17 runs
- COIN: 50 runs (set singles+coin)
- Plus PionLT runs!

Previous luminosity/tracking analysis

- Singles luminosity scans has been previously looked out with online data
- Relative yield has been reduced to ~2% spread for carbon target
- Tracking efficiencies are a big contributor
 - At a given ¾ rate, HMS tracking efficiency is ~4% higher than that of the SHMS
 - HMS tracking efficiency is mostly independent of kinematic setting not the case for the SHMS
 - SHMS tracking efficiency extrapolates to ~95% at 0 KHz – hadron tracking efficiency low by 4-6%

Phase 2.1: HGCer Challenges

- A hole in the HGCer will allow unwanted pions and accidentals
- An in depth analysis will be required for proper efficiency determination
- This hole is already causing visible issues

Phase 2.2: Heep Runs

E (GeV)	-Р _{знмз} (GeV)	-Р _{нмs} (GeV)	Туре	Target	Current (uA)
10.6	6.30-8.04	5.32-6.59	Single+ COIN	LH2	10,15,30,35,40
8.2	4.35-5.75	4.35-5.75	Single+ COIN	LH2	65,70
6.2	3.28-3.94	2.94-3.71	Single+ COIN	LH2	25,50,65,70
4.9	2.58-4.64	2.58-4.37	Single+ COIN	LH2	10,35,70
3.9	2.48-3.01	2.03-3.01	Single+ COIN	LH2	50

Conclusion

- E12-09-011 ran Fall 2018, Spring 2019
 - Also includes PionLT data from Summer 2019
- Currently in the second phase of analysis
- The calibrations are complete for all detectors
- Studies of efficiencies from luminosity are the immediate future
 - Nailing down our efficiencies is critical in diminishing our uncertainties for eventual cross section extraction
 - The hole in the HGCer will be a unique challenge for us to overcome which we look forward to figuring out.
- Acceptances and Heep studies will be the focus once this is complete

Extra Slides

Phase 2: PID Efficiencies

T. Horn et al., PhysRevC 97(2006)192001

σ_L is isolated using the Rosenbluth separation technique

 Measure the cross section at two beam energies and fixed W, Q², -t

 $\frac{d\sigma_{LT}}{dt}\cos\phi + \varepsilon \frac{d\sigma_{TT}}{dt}\cos 2\phi$

- Simultaneous fit using measured azimuthal angle (φ) allows for extracting L, T, LT, and TT
 - \circ Careful evaluation of the systematic uncertainties is important due to the 1/ ϵ amplification in the σ_L extraction
- Must have magnetic spectrometers for such precision cross section measurements
 - This is only possible in Hall C at JLab

SHMS small angle operation

- Some issues with opening and small angle settings at beginning of run
 - \circ $\,$ SHMS at 6.01° $\,$
 - \circ $\,$ HMS at 12.7° $\,$

[12/17/18]

Aerogel Cherenkov detector in SHMS

~15 successful tray exchanges since Fall 2018

- Aerogel performance as expected
- Trays require some optimization before next use prevent damage from crane operation

KaonLT Event Selection

 Isolate Exclusive Final States through missing mass

$$M_x = \sqrt{(E_{det} - E_{init})^2 - (p_{det} - p_{init})^2}$$

- Coincidence measurement between kaons in SHMS and electrons in HMS
 - simultaneous studies of KΛ and KΣ⁰ channels...and a few others...
- Kaon pole dominance tests through

$$\frac{\sigma_L(\gamma^* p \to K^+ \Sigma^0)}{\sigma_L(\gamma^* p \to K^+ \Lambda)}$$

 $\circ \quad \mbox{Should be similar to ratio of coupling} \\ \mbox{constants $g^2_{\ \mbox{pKS}}/g^2_{\ \mbox{pKA}}$ in t-channel} \\$

Interesting Physics in the other channels

 Large difference in L/T ratio between p(e.e'π⁺)n and p(e,e'π⁺)Δ⁰ final states – G. Huber hclog #3640187

- Large increase in neutron missing mass peak at high epsilon is evidence of the pion-pole process at low Q^2 and small –t, which suggests $\sigma_L >> \sigma_T$
- Δ^0 exclusive longitudinal cross section expected to be at best $\sigma_L \sim \sigma_T$

Comparison of high and low ε [Q²=3.0, W=2.32, x=0.40]

- [10.6 Gev (high ε), 6.2 Gev (low ε)]
- Left ($\theta_{high} = 21.18, \theta_{low} = 16.28$)

6.2 GeV (low ε)

reaction plane

scattering plane

 (ω, q)

 $P_{\Lambda(\Sigma^{\circ})}$

Comparison of high and low ε [Q²=3.0, W=2.32, x=0.40]

- [10.6 Gev (high ε), 6.2 Gev (low ε)]
- Left ($\theta_{high} = 21.18, \theta_{low} = 16.28$)

10.6 GeV (high ε)

6.2 GeV (low ε)

Comparison of high and low ε [Q²=3.0, W=3.14, x=0.25]

- [10.6 Gev (high ε), 8.2 Gev (low ε)]
- Center ($\theta_{high} = 9.42, \theta_{low} = 6.89$)

Comparison of high and low ε [Q²=3.0, W=3.14, x=0.25]

- [10.6 Gev (high ε), 8.2 Gev (low ε)]
- Center ($\theta_{high} = 9.42, \theta_{low} = 6.89$)
- 10.6 GeV (high ε)

8.2 GeV (low ε)

Comparison of high and low ε [Q²=3.0, W=3.14, x=0.25]

- [10.6 Gev (high ε)]
- Right ($\theta_{high} = 6.65$)

Comparison of high and low ε [Q²=0.5, W=2.40, x=0.09]

- [4.9 Gev (high ε), 3.8 Gev (low ε)]
- Center ($\theta_{high} = 8.86, \theta_{low} = 6.79$)
- 4.9 GeV (high ε)

3.8 GeV (low ε)

KaonLT Sample Projections

• E12-09-011: Separated L/T/LT/TT cross section over a wide range of Q² and t E12-09-011 spokespersons: T. Horn, G. Huber, P. Markowitz

• JLab 12 GeV Kaon Program features:

- First cross section data for Q² scaling tests with kaons
- Highest Q² for L/T separated kaon electroproduction cross section
- First separated kaon cross section measurement above W=2.2 GeV

blue points from M. Carmignotto, PhD thesis (2017)

KaonLT: Projections for F_{K+}(Q²) Measurements

- E12-09-011: primary goal L/T separated kaon cross sections to investigate hard-soft factorization and non-pole contributions
- Possible K⁺ form factor extraction to highest possible Q² achievable at JLab
 - Extraction like in the pion case by studying the model dependence at small t
 - Comparative extractions of $F^2_{\ \pi}$ at small and larger t show only modest model dependence
 - larger t data lie at a similar distance from pole as kaon data

Possible extractions from 2018/19 run