

Q_{weak} Ancillary Measurements

Thamraa Alshayeb for The Qweak Collaboration

Advisor: Dr. Steve Wells Louisiana Tech University

> Hall C Meeting Newport News, VA 29 Jan 2020

A SEARC FOR NEW

PHYSICS

1324

Electroweak Interaction

Standard Model

 Q_{weak} has used the parity violating asymmetry \rightarrow to test the Standard Model.

By constantly flipping helicity states of a longitudinally polarized electron beam that scatters in the unpolarized target, Q_{weak} has provided a precision measurement of the SM coupling constant $\sin^2 \theta_w$.

Electron-proton interaction scattering:

- Electromagnetic force with a photon-mediated \rightarrow (Conserves parity)
- Weak force driven by Z^0 or W^{\pm} boson \rightarrow (Violates parity)

Parity Violating Asymmetries in Q_{weak}

In Q_{weak}, we scattered longitudinally polarized electrons off protons in an unpolarized liquid hydrogen target, and off of an Aluminum dummy target.

- $\vec{e} + p \rightarrow e^- + p$ (Main measurement elastic measures weak charge of the proton)
- $\vec{e}^{-} + p \rightarrow e^{-} + \Delta^{+} \rightarrow N + \pi + e^{-}$ (Ancillary measurement, inelastic new physics in the N $\rightarrow \Delta$ channel)
- $\vec{e} + p \rightarrow e^- + p, \vec{e} + p \rightarrow e^- + X + \pi^-$ (above the resonance region $\rightarrow \Box_{\gamma Z}$)
- $\vec{e}^{-} + {}^{27}Al \rightarrow e^{-} + {}^{27}Al$ (PV Aluminum asymmetry)

Parity-Violating Asymmetries in Inelastic Scattering

Reasons for measuring the inelastic asymmetries:

- 1. To correct the primary measurement for inelastic background asymmetry
- 2. Using the N $\rightarrow \Delta$ asymmetry to access \mathbf{d}_{Δ} , a low energy constant related to hadronic parity violation
- The N $\rightarrow\Delta$ transition can be pictured as the Z⁰ boson (neutral current) flipping a single quark spin in the constituent quark model

PV Inelastic Measurement

The inelastic PV asymmetry has two measured kinematics for Q_{weak}

Beam Energy	Q ²	W	θ
0.877 GeV	$0.011 \pm 0.00013 \text{ GeV}^2$	1.189 GeV	8.4°
1.16 GeV	$0.021 \pm 0.0001 \ GeV^2$	1.212 GeV	8.3°

The PV asymmetry for Δ production can be written as :

$$A_{PV} = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-},$$

where σ_+ (σ_-) is the cross-section for Δ production for positive (negative) helicity electron beam.

PV Inelastic Measurement of d_{Δ} Extraction

PV Inelastic measurement:

• The low energy constant d_{Δ} can be determined from N $\rightarrow \Delta$ asymmetry

$$A_{N\Delta}^{PV} = -\frac{G_{\rm F}}{\sqrt{2}} \frac{Q^2}{2\pi\alpha} \left[\Delta_{(1)}^{\pi} + \Delta_{(2)}^{\pi} + \Delta_{(3)}^{\pi} \right]$$
Contains d_A

- $\Delta_{(1)}^{\pi}$ is the T=1, standard model coupling (Isovector weak charge)
- $\Delta_{(2)}^{\pi}$ are the non-resonant contributions
- $\Delta_{(3)}^{\pi}$ is the T=1, axial vector nucleon response

Axial Radiative Corrections and Siegert Contribution

 $\Delta_{(3)}^{\pi} \propto \left(1 + R_A^{\Delta}\right) G_{N\Delta}^A$

 $A_{N\Delta}^{PV}$ gives $DIRECT\,ACCESS$ to $G_{N\Delta}^A$

$$R_A^{\Delta} = R_A^{ewk} + R_A^{Siegert} + R_A^{Anapole} + R_A^{Box}$$

Siegert Contribution

$$A_{N\Delta}^{PV} = -\frac{G_F}{\alpha}Q^2 \left[a \frac{\omega}{Q^2} + Anapole\right]$$

up to numerical factors, this matrix element is \mathbf{d}_{Δ}

 $^{1}/_{Q^{2}}$ from the photon propagator cancels the leading Q² dependence, resulting in a possibly non-zero $A_{N\Delta}^{PV}$ at Q²=0.

Axial Radiative Corrections and Siegert Contribution

PV $\gamma N\Delta$ E1 amplitude (Siegert's Theorem) $\rightarrow d_{\Delta}(\sim g_{\pi})$

If d_{Δ} is significantly different from zero, $A_{N\Delta}^{PV} (Q^2 = 0) \neq 0!$ $g_{\pi} = 3 \times 10^{-8}$ is the natural scale for d_{Δ}

where g_{π} is the hadronic PV coupling constant for charged current interactions

• Same matrix element drives Weak Hyperon Decay (e.g. $\Sigma + \rightarrow p + \gamma$) and a model* suggests d_{Δ} could be as large as ~ 100 g_{π}

Jefferson Lab

Asymmetry Extraction Formula

To extract the inelastic Asymmetry, the false asymmetries need to be removed from the raw asymmetry.

 $A_{msr} = A_{raw} + A_{BCM} + A_{beam} + A_{BB} + A_L + A_T + A_{bias} - A_{blind}$

where A_{raw} is the uncorrected measured asymmetry, A_{BCM} is a correction due to beam charge normalization, A_{beam} is the correction for false asymmetries due to helicity-correlated beam variations, A_{BB} is the beam background asymmetry, $A_L is$ the linearity correction, A_T is the transverse asymmetry, A_{bias} is due to re-scattering bias, and A_{blind} is constant blinding offset.

Multiplicative Corrections

$$\mathbf{R_{tot}} = R_{det} R_{rc} R_{acc} R_{Q^2}$$

The PV asymmetry can be extracted from the measured asymmetry after correcting for the beam polarization, false asymmetries and backgrounds.

$$\boldsymbol{A_{inel}} = R_{tot} \, \frac{\frac{A_{msr}}{P} - \sum_{i=1-4} f_i A_i}{1 - f_{tot}}$$

P is beam polarization, A_i are the background asymmetries, and the f_i are background dilutions.

$N \rightarrow \Delta$ Asymmetries Tables @ 1.16 GeV

Asymmetries	Run1	Run2	Kinematics	Value
			Q^2	$0.0208 \pm 0.00009 (\text{GeV/c})^2$
A _{raw}	-1.36 ± 0.22 ppm	-0.685 ± 0.17 ppm	W	$1.212 \pm 0.0002 \text{ GeV}$
False Asymm.			Dilution Factors	Value
	0 1 0 0 40	0.1.0.020	f_{ep}	0.7242 ± 0.03621 ppm
A _{bcm}	$0 \pm 0.040 \text{ ppm}$	$0 \pm 0.030 \text{ ppm}$	L	
4		0.052 0.052		
A _{beam}	$0.04 \pm 0.04 \text{ ppm}$	-0.052 ± 0.052 ppm		
A _{BB}	0.518 ± 0.24 ppm	0.093 ± 0.194 ppm		
A_L	$0.002 \pm 0.0011 \text{ ppm}$	0.0010±0.0008 ppm		
			f_{ep} is	a large dilution
A_T	$0 \pm 0.032 \text{ ppm}$	$0 \pm 0.012 \text{ ppm}$		
	0.0042 + 0.01	0.0042 + 0.01	• Much effor	t put into simulations
A _{bias}	$0.0043 \pm 0.01 \text{ ppm}$	0.0043 ± 0.01 ppm	vs. QTOR to	reduce the uncertainty
			on f _{ep}	
A _{blind}	-0.02534 ± 0 ppm	0.00669 ± 0 ppm	1	

10

Asymmetry Extraction Formula at 1.16 GeV

 $A_{msr} = A_{raw} + A_{BCM} + A_{beam} + A_{BB} + A_L + A_T + A_{bias} - A_{blind}$ $A_{msr} (Run1) = -0.770 \pm 0.33 \text{ ppm}, \qquad A_{msr} (Run2) = -0.645 \pm 0.26 \text{ ppm}$

Multiplicative Factors $R_{tot} = R_{det}R_{rc}R_{acc}R_{Q^2}$ $R_{tot} = 0.9909$ **Background Dilutions** $f_{tot} = f_{ep} + f_{Al} + f_{nt} + f_{pion} + f_{BB}$ $f_{tot} = 0.8105$

$$A_{inel} = R_{tot} \frac{\frac{A_{msr}}{P} - f_{ep}A_{ep} - f_{Al}A_{Al} - f_{nt}A_{nt} - f_{pion}A_{pion}}{1 - f_{tot}}$$

$$f_{ep}A_{ep} = -0.1375, \quad f_{Al}A_{Al} = 0.0576, \quad f_{nt}A_{nt} = -0.00734, \quad f_{pion}A_{pion} = 0.0482$$

 A_{inel} (Run1) = - 4.49 ± 1.34 stat ± 1.79 sys ppm A_{inel} (Run2) = - 3.60 ± 1.003 stat ± 1.43 sys ppm

 $A_{inel_total} = -3.91 \pm 1.51 \text{ ppm}$

Jefferson Lab

Dissertation for T. ALshayeb

Outstanding Issues for N $\rightarrow \Delta$ Final Results

- Pion simulation (getting best pion dilution fractions possible)
- Pion asymmetry (reaching out for theoretical guidance)

A_{inel} Plotted vs Q²

 $\mathbf{A_{inel}} = -1.2 \pm 0.98 \text{ (stat)} \pm 0.99 \text{ (syst) ppm (preliminary)}$ $\mathbf{d_{\Delta}} = (-8 \pm 22 \text{ (stat)} \pm 22 \text{ (syst)} \pm 3 \text{ (theory)}) g_{\pi} \text{ (preliminary)}$

• G_0 has published a value: $d_{\Delta} = (8.1 \pm 23.7 \pm 8.3 \pm 0.7) g_{\pi}$ (Androic et al (G_0 collaboration), PRL 108, 122002 (2012))

All three measurements have \mathbf{d}_{Δ} consistent with zero within errors

The weak charge of proton (uud) and neutron (udd), at tree level are :

$$Q_W^p = 1 - 4 \sin^2 \theta_W \quad \text{and} \quad Q_W^n = -1$$

Proton's weak charge with electroweak radiative corrections, which can be written as:

$$Q_W^p = (1 + \Delta_{\rho} + \Delta_e)(1 - 4\sin^2\theta \ (0) + \Delta'_e) + \Box_{WW} + \Box_{ZZ} + \Box_{\gamma Z}(0),$$

can be calculated by perturbative QCD

where Δ_{ρ} is a vacuum polarization correction, Δ_{e} is a vertex correction to the γe vertex, Δ'_{e} is a vertex correction to the Ze vertex, and \Box_{WW} , \Box_{ZZ} , and $\Box_{\gamma Z}$ are corrections for two-boson exchange interactions.

Beam Properties

E = 3.35 GeV, $\theta_{\text{pol}} = 92.2^{\circ} \longrightarrow$ Transverse Mode $E' \approx 1.1 \text{ GeV},$ W = 2.23 GeV

P = 89 %, $Q^2 = 0.082 \text{ GeV}^2$

[3] J. Erler, A. Kurylov, and M. J. Ramsey-Musolf, Phys. Rev. D68, 016006 (2003).

Jefferson Lab

γZ box $(\Box_{\gamma Z})$ Motivation

In 2009, Gorchtein and Horowitz determined $\Box_{\gamma Z}^{V}$ ^[4]:

- Larger than previously expected
- Significant hadronic physics uncertainties
- Strong energy dependence

\mathbf{Q}_{weak} measured \boldsymbol{Q}_W^p

- Must include electroweak radiative corrections
- Sensitive to large W and low Q^2

Pion Background

• A large difference between E & E' (E - E' > 2 GeV)

leads to a large pion background

- A 4-inch lead wall (absorber ~18 radiation lengths) placed in front of lowest Čerenkov Detector (MD7) to create a pion detector and determine the π^- contribution while positively charged pions (π^+) were swept away by the magnet.
- The rate of charged particles in the detectors without a Pb absorber :
- \geq 27% pions
- \succ 73% electrons.

A_{inel} Plotted for $\Box_{\gamma Z}$

dominated by systematic uncertainties $\sim 28.7\%$

Submitted to the PHYS Rev C. (arXiv:1910.14591v1)

Elastic PV Aluminum Asymmetry

- Q_{weak} has made the first parity violating elastic and beam-normal single-spin asymmetries from the ²⁷Al nucleus to determine the aluminum target background.
- A single asymmetry measurement allows the weak charge density to be extracted.
- Neutron skin thickness will be extracted.

Horowitz's Theory of ²⁷Al Asymmetry

- Beam Energy = 1.16 GeV
- $Q^2 = 0.024 \text{ GeV}^2$
- P = 88%

At the average acceptance of $Q_{\mbox{weak}},$ Born approximation asymmetry

Preliminary analysis graph of the PV Q_{Weak}²⁷Al asymmetry with C.J Horowitz's theory curves.

C. J. Horowitz Phys. Rev. C 89, 045503 (2014)

Jefferson Lab

 A_{PV} predicts ≈ 2.1 ppm.

Outstanding Issues for ²⁷Al Final Results

- Meson exchange current contribution predicted to be large by using the Bosted-Mamyan fit.
- New model for simulations including MEC's to more accurately predict MEC contribution to yield (E. Christy).
- Reaching out for theoretical guidance for PV MEC asymmetry (C. Horowitz).

Additional Topics: BNSSA Measurements

• **Beam-Normal Single-Spin Asymmetry:** parity-conserving asymmetry from transversely polarized electron beams on unpolarized targets.

Elastic BNSSA	$\mathbf{N} \rightarrow \Delta \mathbf{BNSSA}$	Elastic e ⁻ - ²⁷ Al	Elastic e ⁻ - ¹² C	Moller e ⁻ - e ⁻
(e ⁻ - p)		BNSSA	BNSSA	BNSSA
*Preliminary	* Preliminary	*Preliminary	*Preliminary	* Initial analysis results finished
results finished	results finished	results finished	results finished	
(thesis)	(two theses)	(thesis)	(thesis)	
* Paper under revision	* Data is only horizontal	* Horizontal and vertical data	* Data is horizontal only	
* Horizontal and vertical transverse data	* π^- dilutions and asymmetries need to be finalized	* MEC issues to be resolved	* Some analysis issues to be resolved	* Final analysis needs to be performed

Conclusion

• For Parity Violating Asymmetries on the $N \rightarrow \Delta$ resonance,

 \rightarrow Preliminary d_{Δ} value is consistent with zero for both beam 877 MeV and 1.16 GeV energies; however, is inconsistent with models that predict d_{Δ} as high as 100 g_{π}.

- \rightarrow f_{π} and A_{π} need final values to obtain final N $\rightarrow \Delta$ PV asymmetries.
- For Parity Violating Asymmetry in e + p above the resonance region $\rightarrow \Box_{\gamma Z}$,
- \rightarrow is consistent with the prediction of the model.
- \rightarrow transverse and PV π^- asymmetries measured also.
- For Parity Violating Asymmetry for ²⁷Al,
- \rightarrow MEC issues to be resolved!
- Several BNSSA measurements performed as well!

The Q_{weak} Collaboration

99 collaborators 25 grad students 10 post docs 23 institutions

Institutions:

- 1 University of Zagreb
- ² College of William and Mary
- ³ A. I. Alikhanyan National Science Laboratory
- ⁴ Massachusetts Institute of Technology
- ⁵ Thomas Jefferson National Accelerator Facility
- Ohio University
- ⁷ Christopher Newport University
- University of Manitoba,
- * University of Virginia
- 10 TRIUME
- 11 Hampton University
- 12 Mississippi State University
- 13 Virginia Polytechnic Institute & State Univ
- 14 Southern University at New Orleans
- 15 Idaho State University
- 14 Louisiana Tech University
- 17 University of Connecticut
- ** University of Northern British Columbia
- ** University of Winnipeg
- ²⁸ George Washington University
- 21 University of New Hampshire
- 22 Hendrix College, Conway
- 23 University of Adelaide

T. AlShayeb,¹⁶ D. Androic,¹ D.S. Armstrong,² A. Asaturyan,³ T. Averett,² J. Balewski,⁴ J. Beaufait,⁵ R.S. Beminiwattha,⁶ J. Benesch,⁵ F. Benmokhtar,⁷ J. Birchall,⁸ R.D. Carlini,^{5,2} G.D. Cates,⁹ J.C. Cornejo,² S. Covrig,⁵ M.M. Dalton,⁹ C.A. Davis,¹⁰ W. Deconinck,² J. Diefenbach,¹¹ J.F. Dowd,² J.A. Dunne,¹² D. Dutta,¹² W.S. Duvall,¹³ M. Elaasar,¹⁴ W.R. Falk,⁸ J.M. Finn,² T. Forest,^{15, 16} D. Gaskell,⁵ M.T.W. Gericke,⁸ J. Grames,⁵ V.M. Gray,² K. Grimm,^{16, 2} F. Guo,⁴ J.R. Hoskins,² K. Johnston,¹⁶ D. Jones,⁹ M. Jones,⁵ R. Jones,¹⁷ M. Kargiantoulakis,⁹ P.M. King,⁶ E. Korkmaz,¹⁸ S. Kowalski,⁴ J. Leacock,¹³ J. Leckey,² A.R. Lee,¹³ J.H. Lee,^{6, 2} L. Lee,¹⁰ S. MacEwan,⁸ D. Mack,⁵ J.A. Magee,² R. Mahurin,⁸ J. Mammei,¹³ J.W. Martin,¹⁹ M.J. McHugh,²⁰ D. Meekins,⁵ J. Mei,⁵ R. Michaels,⁵ A. Micherdzinska,²⁰ A. Mkrtchyan,³ H. Mkrtchyan,³ N. Morgan,¹³ K.E. Myers,²⁰ A. Narayan,¹² L.Z. Ndukum,¹² V. Nelyubin,⁹ H. Nuhait,¹⁶ Nuruzzaman,^{11, 12} W.T.H van Oers,^{10, 8} A.K. Opper,²⁰ S.A. Page,⁸ J. Pan,⁸ K.D. Paschke,³ S.K. Phillips,²¹ M.L. Pitt,¹³ M. Poelker,⁵ J.F. Rajotte,⁴ W.D. Ramsay,^{10, J} J. Roche,⁶ B. Sawatzky,⁵ T. Seva,¹ M.H. Shabestari,¹² R. Silwal,⁹ N. Simicevic,¹⁶ G.R. Smith,⁵ P. Solvignon,⁵ D.T. Spayde,²² A. Subedi,¹² R. Subedi,²⁰ R. Suleiman,⁵ V. Tadevosyan,³ W.A. Tobias,⁹ V. Tvaskis,^{19, 8} B. Waldyawansa,⁶ P. Wang,⁸ S.P. Wells,¹⁶ S.A. Wood,⁵ S. Yang,² R.D. Young,²³ and S. Zhamkochyan ³

Spokespersons Project Manager Grad Students

REFERENCES

[1] S.P. Wells. Physics of PV Asymmetry in N to Delta at Low Q²

- [2] James Dowd. Probe of Electroweak Interference Effects in Non-Resonant Inelastic Electron-Proton Scattering, 2019
- [3] J. Erler, A. Kurylov, and M. J. Ramsey-Musolf, Phys. Rev. D68, 016006 (2003).
- [4] Gorchtein and Horowitz. Phys. Rev. Lett. 102, 091806 (2009)

[5] arXiv:1910.14591v1

- [6] Lee, A. Qweak Ancillary Results:
- Exploring the Nucleus with Fundamental Symmetries. 86th Annual Meeting of the APS Southeastern Section, 2019
- [7] Kurtis Bartlett. First Measurements of the Parity-Violating and Beam-Normal Single-Spin Asymmetries in Elastic Electron-Aluminum Scattering. Hall C Collaboration Meeting, 2018

BACK UP SLIDE

BACK UP SLIDE BACK UP SLIDE BACK UP SLIDE BACK UP SLIDE BACK UP SLIDE

Pion Asymmetry Extraction

• Extracting pion yield-fraction in unblocked detectors

- Using Event-Mode data (ADC) pulse height spectrum to distinguish particle types.
- Monte-Carlo simulation of e^- and π^-

•Average Pion Yield Fraction for unblocked detectors with conservative bound:

$$f_{\pi^{-}}^{avg} = 0.096 \pm 0.029$$

Different method used for detector with lead wall:

$$f_{\pi^{-}}^{MD7} = 0.811 \pm 0.056$$

²⁷Al Asymmetry Data and Uncorrected Data

• A 4 % calculation of the pure ²⁷Al APV, according to Horowitz, is sensitive to

2% changes in R_n

• Q_{weak} has 4.9 % asymmetry measurement on the ²⁷Al alloy without background

corrections

Improved ²⁷Al MEC Model

