Open-Mic Session

5 minutes, including discussion

EICUG Yellow-Report Kick-off Meeting MIT - December 12 and 13, 2019

Jets and Heavy Flavor at EIC as an important part of its Physics Program

Xuan Li, Los Alamos National Laboratory

Jets and heavy flavor at EIC as an important part of its physics program - new developments/progress at LANL

- EIC can help solve different fundamental physics problems in a wide x and Q² kinematic region, including providing a clean environment to study the flavor dependent energy loss and hadronization in nuclear medium. Forward silicon tracking is essential to realize such measurements.
- LANL experimental group worked on silicon vertex and tracking detectors for 20 years and the theoretical group developed the energy loss mechanisms and leads several other QCD topics.
- A new 3-year LDRD project funded by LANL with PI: Ivan Vitev, Co-PI: Xuan Li and 14 staffs and postdocs just starts to develop a new heavy flavor and jet program for the future EIC and carry out relevant detector R&D.

EIC detector requirements for heavy flavor (jet) studies

- To measure heavy flavor products, jets and their correlations in the hadron/nuclei going (forward) direction at the EIC, we proposed to build the Forward Silicon Tracking (FST) detector for the future EIC.
- Initial detector design and performance evaluation in fast simulation.
 Will carry out studies in the EIC official software.

Fundamental outputs of heavy flavor and jets physics program at EIC

- Competing models of nuclear modification in DIS reactions with nuclei (e.g HERMES data). Differentiation not possible with light hadrons.
 - Hadronization inside nuclear matter (dashed lines).
 - Energy loss of partons, hadronization outside the nuclear matter (solid lines).
- Heavy flavor mesons have very different fragmentation functions and formation times
 - Easy to discriminate between larger suppression for D/B mesons (in-medium hadronization) and strong/intermediate z enhancement (E-loss).
 - Enhanced sensitivity to the transport properties of nuclei.

Projection in \sqrt{s} = 69 GeV e+Au collisions

We look forward to integrate into the physics/detector working group's efforts!

MAPS sensor/detector efforts at CERN with possible applications to EIC

Leo Greiner, Lawrence Berkeley Natl. Lab.

Kickoff meeting held at CERN on December 4, 2019 for "ALICE ITS Upgrade in LS3"

https://indico.cern.ch/event/860914/

The most relevant efforts in this Letter of Intent (endorsed by the LHCC in September 2019) include:

• <u>Silicon R&D for next generation MAPS sensor (with significant improvements)</u>

coupled with

• R&D into extremely low X/X0 cylindrical vertex detection with "bent" silicon

Much of this has already been presented by my colleague Vito Manzari at <u>2019 EIC User Group Meeting</u>, 22-26 July 2019 Paris

From Electron-Ion Collider Detector Requirements and R&D Handbook Version 1.1 p.30 4.1.1.2 Vertex/silicon tracker:

"With respect to ALPIDE, the EIC would certainly benefit in improvements in the integration time as well as in a further reduction of the energy consumption and material budget going towards 0.1-0.2% radiation length per layer. Timing-wise the ultimate goal of this technology would be to time stamp the bunch crossings where the primary interaction occurred."

Parameter	ALPIDE (existing)	Wafer-scale sensor (this proposal)
Technology node	180 nm	65 nm
Silicon thickness	50 μm	20-40 µm
Pixel size	27 x 29 μm	O(10 x 10 μm)
Chip dimensions	1.5 x 3.0 cm	scalable up to 28 x 10 cm
Front-end pulse duration	$\sim 5 \ \mu s$	$\sim 200 \text{ ns}$
Time resolution	$\sim 1 \ \mu s$	< 100 ns (option: <10ns)
Max particle fluence	100 MHz/cm^2	100 MHz/cm^2
Max particle readout rate	10 MHz/cm^2	100 MHz/cm^2
Power Consumption	40 mW/cm^2	< 20 mW/cm ² (pixel matrix)
Detection efficiency	>99%	>99%
Fake hit rate	< 10 ⁻⁷ event/pixel	< 10 ⁻⁷ event/pixel
NIEL radiation tolerance	$\sim 3 \times 10^{13} 1 \text{ MeV } n_{eq}/cm^2$	10^{14} 1 MeV n _{eq} /cm ²
TID radiation tolerance	3 MRad	10 MRad

Sensor Specifications

M. Mager | ITS3 kickoff | 04.12.2019 | 5

3

<u>Comments</u>

- This approved and supported research and development project contains many elements that can have application in an EIC detector set.
- The overlap between the sensor development goals and EIC requirements is significant.
- The timeframe (ALICE ITS 3 installation during CERN LS3) seems to be a reasonable match.
- CERN and collaborators will invest significant resources in this project => high likelihood of success.
- LBNL-RNC has joined this effort.
- In addition to the ALICE work package efforts that we are joining, we intend to also invest in the development of making stitched sensors into low X/X0 discs.
- We have spoken to others about these efforts (ITS3 silicon/detector and discs) and there is some interest in forming a group effort for applying these developments for EIC.
- Any questions or interest, please talk to me.

L. Greiner (LBNL) - 2019_12_12

Entanglement and Correlations at short distances at an EIC

Kong Tu, Brookhaven National Lab.

Standing problem in QCD and modern physics

Possible measurements and impact on detectors

- Short-Range Correlations (SRC) in light and/or heavy nuclei for *extreme configuration*, e.g., J/psi production off deuterium. (*Miller, Sievert,* and *Venugopalan* (2016))
- Spectator tagging physics (C.Weiss, M. Strikman)

Very forward instrumentations are needed. (protons/neutrons, acceptance, resolution)

Initial studies have been done, but not enough. Will need detail NUMBERS.

- Entanglement in proton and nucleus via measurements of multiplicity distributions in target fragmentation.
 (D.Kharzeev, E. Levin, Z.Tu, T.Ullrich)
- Entanglement via spin correlation. Test of Bell-equality in high energy collisions.
 (Z.Tu, D.Kharzeev, T.Ullrich in preparation)

Access to Target fragmentation (tracking, PID?)

How forward is needed ? Still under study.

Possible measurements and impact on detectors

Yellow Report should address these requirements quantitatively

Open Mic Session - MIT Kick-off meeting

Prospects for Di-hadron and Lambda Measurements

Chris Dilks, Duke University

Dihadrons: Probing Spin-Orbit Correlations in Hadronization

Unpolarized SIDIS:

- Cahn Effect: quark transverse momentum leads to azimuthal modulations of SIDIS cross section
- Boer-Mulders Effect: Non-collinear quarks in an unpolarized proton can have transverse polarization

Dihadrons can help decouple BM from Cahn

- Single-hadron SIDIS: asymmetry modulated by azimuthal angle about virtual photon
 - BM contributes at twist-2, but Cahn effect also contributes at twist-4
 - HERMES and COMPASS have shown that the BM and Cahn contributions are comparable
- Extra degree of freedom in dihadrons
 - Cahn effect impacts dihadron total momentum direction P_h
 - Utilize azimuthal angle about P_{h} , instead of the azimuth about the virtual photon
- Advantages from a broader and higher Q² range at an EIC
 - Broader Q² range probes evolution effects
 - Higher Q² suppresses Cahn effect in single-hadron asymmetries
 - Lower Q² for overlap with other SIDIS experiments

C. Dilks

Dihadrons: Probing Spin-Orbit Correlations in Hadronization

Longitudinally polarized SIDIS:

Helicity DiFF G_1^{\perp} :

- Not yet constrained by data!
- Spin-orbit correlations in hadronization
- Fragmenting quark acquires transverse polarization via 'wormgear' splitting in the quark-jet hadronization model
- Preliminary CLAS12 data indicate significant effect, dependent on invariant mass

Collinear Twist-3 PDFs e(x) and h_L(x):

- CLAS6 data provided the first e(x) extraction, consistent with models; CLAS12 data appears to be in agreement
- Moments of e(x) provide access to:
 - **Transverse color-force** on a transversely polarized struckquark, in an unpolarized proton
 - πN sigma terms:
 - · Quark mass contribution to proton mass
 - Quark chromomagnetic dipole moment → CP-odd!
- No experimental constraints yet for $h_{L}(x)$

EIC would expand kinematic coverage to a broader range, complementing and comparing to forthcoming JLab12 measurements

Transversely or Longitudinally polarized SIDIS: Access several additional TMDs

C. Dilks

Lambda Baryons

- A polarization is 'self-analyzing': inferred by decay nucleon momentum
 - Access to TMD-FF with transversely polarized hadron D_{1T}^{\perp} as well as transversity
 - Could arise from spin-orbit correlations in fragmentation
 - Also access quark polarization in the collinear framework if ∧ spin transfer is known

Significant nonzero polarization observed in e⁺e⁻, not yet measured in SIDIS

- Gervation of Λ polarization in SIDIS at JLab12 and an EIC give complementary access to $D_{1\tau}^{\perp}$
 - Flavor separation, Universality, and Evolution
 - Clean access to transversity
 - Acceptance in fixed-target SIDIS \rightarrow challenging to measure Λ baryons
 - What detectors would we need at an EIC?

C. Dilks

Jets as Precision Probes in eA Collisions

Miguel Arratia, U. of California Berkeley

Jets as precision probes in e-A Collisions (*later today on arXiv*) Miguel Arratia, Youqi Song, Felix Ringer, and Barbara Jacak University of California, Berkeley

Jet transport in nuclei

- Clean and orthogonal channels to measure jet transport parameter in e-A.
- Novel observables for TMD physics in e-p, not studied yet.

Electrons Quarks Jets

High x, Q^2

