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EIC detector concepts in one slide 
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EIC Detector Concepts overview 
•  Key features: 

‣  Vertex + central + forward/backward tracker layout 
‣  Central detector: hermetic coverage in tracking/calorimetry/PID for |η|<4 

‣  Advanced far forward instrumentation (Roman Pots, ZDC, etc) 
‣  Far backward instrumentation (Low Q2 tagger) 

‣  Low material budget in the tracker volume 
‣  1.4 – 4.0 T central solenoid field  

‣  Moderate momentum resolution (~1% level) 
‣  Moderate-to-high vertex resolution (<20 µm or so) 
‣  Moderate EmCal and HCal energy resolution 

•  As stated at e.g. Temple UG meeting in Nov’2017, community 
wants two general-purpose detectors 
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EIC physics case in one slide 

Key questions: 
 
•  How are the sea quarks 

and gluons, and their 
spins, distributed in 
space and momentum 
inside the nucleon? 

•  How does the nuclear 
environment affect the 
distribution of quarks and 
gluons  and their 
interactions in nuclei?  

•  Where does the 
saturation of gluon 
densities set in? Does 
this saturation produce 
matter with universal 
properties? 

Precision study of quark and gluon dynamics inside nucleon and nuclei 

A.Acardi et al, EPJ  A 52 9 (2016)  
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EIC physics measurements in one slide 
Parton 

Distributions in 
nucleons and 

nuclei 

Spin and  
Flavor 

structure of 
nucleons and 

nuclei 

Tomography 
Transverse 
Momentum 

Dist. 

QCD at 
Extreme Parton 

Densities - 
Saturation   

Tomography 
Spatial 
Imaging 

inclusive DIS (ep/eA) semi-inclusive DIS (ep/eA) exclusive processes (ep/eA)   
•  measure scattered lepton  
•  two-dimensional binning: {x, Q2} 

à  large kinematic coverage 
(where reach to lowest x,Q2 

also impacts IR design) 
à  event kinematics reconstruction 

(tracking, e/m calorimetry) 
à  high quality electron ID in the 

whole acceptance 

•  measure scattered lepton  
   and hadrons in coincidence 
•  multi-dimensional binning:  
   {x, Q2, z, pT, Φ}
à  hadron identification over 

entire acceptance 
à  tracking 
à  hadronic calorimetry (jets) 
à  vertexing (charm) 

•  measure all particles in event 
•  multi-dimensional binning:  
   {x, Q2, t, Φ} 
à  rapidity gap: hermeticity  
à  far forward instrumentation 

(recoil protons, exclusivity) 
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Inclusive measurements 



DIS kinematics reconstruction: electron 

p/A 

e 

e' Electron method -> only scattered electron  
information is used  

(1) Scattered electron 
(2) Proton (ion) remnants 
(3) Struck quark fragmentation products 

θe’

“Classic” way to determine {x,Q2} 
Obviously diverges at small y  
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EIC tracker: systems & options 
•  Vertex detector 
‣  (D)MAPS, DEPFET, … 

•  Central tracker 
‣  TPC (+ MM) 
‣  All-silicon tracker 
‣  Curved MM (µRWELL) 
‣  Drift chamber 
‣  Straw tube tracker 

•  Endcap trackers 
‣  Flat GEMs (MM, µRWELL, sTGC) 

•  Forward & backward trackers 
‣  (D)MAPS, “traditional” silicon, … 
‣  (Very) high resolution GEMs 

Momentum resolution for a Si+TPC+GEM setup 

Pseudo-rapidity
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Material budget  

•  All options favorably compare to the 
performance of HERA collider experiments: 

à H1      : 0.6%*Pt + 1.5% 
à ZEUS : 0.5%*Pt + 1.5%  

Si+µRWELL setup Si+TPC+GEM setup 
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Where does the scattered electron go?   

1
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•  Need excellent electron 
ID in a wide range of 
energies and polar angles  
à equal rapidity coverage 

for tracking and e/m 
calorimeter 

à  low material budget to 
reduce bremsstrahlung 

•  Momentum (energy) and 
angular resolution of 
scattered electron is 
critical 

Scattered electron kinematics is very different depending on {x,Q2}   
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Where does the scattered electron go?   

•  Electrons typically go to 
electron endcap, except for 
large (barrel) and very 
large (hadron endcap) Q2 

•  Photoproduction (Q2 < 0.1 
GeV2) physics require a 
dedicated low Q2 tagger 
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EIC e/m calorimetry: systems & options 
•  Inner EmCal at η < -2 (at least) 
‣  Scattered electron energy measurement at 
rear angles, where solenoid bending power  
runs out of stem; resolution ~1.5%/√E + 0.5%  
required to improve kinematic coverage in y;  
radiation hardness! 
Technology: PWO crystals 
 
 

•  Electron-going endcap at -2 < η < -1 
‣  As tracker takes over the scattered electron momentum measurement, 

modest energy resolution ~7-10%/√E suffices  
•  Barrel (-1 < η < 1) and Hadron-going endcap (1 < η < 4) 
‣  Energy resolution ~10-12%/√E may suffice; limited radial space! 

    Technology: sampling W/SciFi spaghetti or W/Cu/SciTile shashlik  
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Where does the struck quark go? 

•  Quarks (and their proxies: 
leading hadrons, jets) 
basically go everywhere: 
electron endcap, barrel,  
hadron endcap  
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DIS kinematics reconstruction: struck quark 

p/A 

e 

e' 

(1) Scattered electron 
(2) Proton (ion) remnants 
(3) Struck quark fragmentation products 

Jacquet-Blondel method -> only hadronic final state  
information is used  

The only way to reconstruct {x,Q2} for charged current 
events (since neutrino in the final state can not be detected)  
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e' “Mixed” versions exist 
(sigma and double-angle  
methods in particular) 



Semi-Inclusive Physics 



Kinematics of SIDIS pions     
(π±, K±, p± look similar ) Cuts: Q2>1 GeV2, 0.01<y<0.95, z>0.1 
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-> -3.5 < η < 3.5  covers entire kinematic region in hadron z (virtual photon energy 
fraction) and pt (transverse momentum), basically for all proton beam energies 



Particle ID for an EIC detector 

•  In general, need to separate: 
‣  Electrons from photons 
‣  Electrons from charged hadrons 
‣  Charged pions, kaons and protons from each other 
 

•  Use available physics processes and the detector 
arrangement(s) to do so: 
‣  Cerenkov radiation (e/π/K/p in a certain momentum ranges) 
‣  Time of flight (π/K/p up to several GeV/c) 
‣  dE/dx (π/K/p up to ~1 GeV/c) 
‣  Transition radiation (e/h above ~2 GeV/c) 

‣  {e/m + hadronic} segmentation of the calorimeter setup (e/h) 

 

Focus on electron and charged hadron identification 
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Hadron PID solution for EIC 

•  h-endcap: a RICH with two 
radiators (gas + aerogel) is 
needed for π/K separation up 
to ~50 GeV/c 

•  e-endcap: A compact 
aerogel RICH with π/K 
separation up to ~10 GeV/c 

•  barrel: A high-performance 
DIRC provides a compact 
and cost-effective way to 
cover the area with π/K 
separation up to ~6-7 GeV/c 

 
•  TOF and/or dE/dx in a TPC 

can cover lower momenta 
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Relative particle yields 

h- suppression: through E/p and  
a combination of other 

technologies, η range dependent 

•  π/K/p distributions at the same η look similar ... 
•  … and  π/K ratio is about 3:1 

•  electrons from decays are not shown here 

γ suppression:  
the same η coverage for 

tracking & EmCal  
El

ec
tr

on
 ID
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Physics with jets at an EIC 

Example study: jets at mid-rapidities, ep 20 x 250 GeV, 10 < Q2 < 100 GeV2  
‣  eic-smear pass in a PFA-like fashion (check Pt reconstruction quality) 

-> So a high resolution HCal  does make a difference 19 
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EIC hadronic calorimetry: systems & options 
•  Hadron-going endcap (1 < η < 4) 
‣  High-performance system most likely required for forward jet 

measurements, energy resolution <40%/√E with a small constant term 
‣  Compactness (little space available, so 5-7 λ deep) is also an issue 

•  Electron-going endcap and barrel (-4 < η < 1) 
‣  Case needs to be justified; modest energy resolution may suffice 
 

•  Possible implementations 
‣  Pb/Sci tile compensated sandwich design 
 
‣  High granularity calorimetry? 
‣  Dual readout (Scintillation/Cerenkov) or dual gate (late neutrons)? 
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Open charm reconstruction   
Signature: displaced secondary vertex

•  Vertex tracker: closest to the IP 
detector to provide vertex resolution 
better than ~20 µm 

•  Low material budget detector (to 
reduce multiple scattering)  

 
•  Beam-induced background could 

cause radiation damage (proper 
shielding / masking of synchrotron 
radiation required) 

 
•  Provides stand-alone measurements 

of low-Pt particles (potentially with dE/
dx measurements for PID ?) 

•  Prefer relatively small solenoid field 
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Example study: exclusive decay D0 -> K- π+  
ep 10 GeV x100 GeV, selection: Q2 > 10 GeV2, xB > 0.05 
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Exclusive Reactions 



Exclusive reactions in ep/eA  
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•  Diffraction: establish rapidity gap 
Ø  Hermetic acceptance 
Ø  HCal for 1<η<4.5 

•  Exclusivity: measure all final state particles 
Ø  wide coverage in t (=pt

2) à Roman pots for recoil protons 
 

•  eA: veto nucleus break-up by ZDC 
 
•  Sufficient acceptance for other reaction products (DVCS 

photons, e+e- pairs from J/ψ decay, etc) 

muons from J/ψ decay 

‣  Up to ~4-6 mrad cone opening to ZDC required ‣  Mostly seen in the main detector

‣  Defines acceptance of the far 
forward magnetic spectrometers 
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DVCS    
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‣  Need e/m calorimetry coverage in -4 < η < 2 range
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Example study: DVCS proton Pt acceptance (by far forward spectrometers) 

‣  Realized as a combination of large acceptance dipole (B0) and traditional Roman Pots (RP) 
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Gluon imaging 
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Diffractive vector meson production: 

~
t =  Δ2/(1-x) ≈ Δ2 

•  veto nucleus break-up by ZDC 
•  detect scattered electron in the main spectrometer 
•  detect e+e-  (µ+µ-) pairs from J/ψ decay, or K+K- from φ decay elsewhere

e + Au → eʹ + Auʹ + J/ψ (φ)



Short range correlations 
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•  Need to have enough of the forward acceptance to detect leading and recoil nucleons 
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Example study: BEAGLE,  e+C, 5x50 GeV 



Tagged DIS 
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Tagged-DIS on Deuteron 
Spectator nucleon tagging Tagging ∆ isobars

Challenges for forward detection:  
(a) spectator rigidity different from beam  
(b) need momentum resolution ~ few 10 MeV 
(c) ion beam momentum spread  

•  Neutron structure 
•  Origin of EMC effect 
•  Shadowing and coherent 

phenomena 



Pion/Kaon structure functions 

Example study: pions & 
protons from Λ decay 

•  Main beam is focused 
•  High dispersion for off-momentum 

particles  
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IR far forward design  

Ø  25 mrad crossing angle 
Ø   Spectrometer dipole (B0) :  ~20mrad 
acceptance 
Ø   2nd dipole (B1) to separate hadrons from 
neutrons:  ±4mrad neutron cone to ZDC 
 

50	mrad	

10	mrad	

Low	Q2	tagger	

Secondary		
focus	

Roman	pots	End	caps	

Central	detector	

electrons	hadrons	

eRHIC JLEIC 

Ø  50 mrad crossing angle 
Ø  Spectrometer dipole (D1) :  ~45mrad 
acceptance 
Ø  2nd dipole (D2) to separate hadrons from 
neutrons:  ±10mrad neutron cone to ZDC 
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Backgrounds 



Neutron fluence from primary interactions  
The quantity: Fluence = “a sum of neutron path lengths”/”cell volume” for N events 

-> forward EmCal: up to 
~5*109 n/cm2 per fb-1  (inside 
the towers); perhaps ~5  
less at the SiPM location;  
 
NB: “standard” EIC run at  
~1033 cm-2s-1 luminosity is 10 fb-1 The numbers look OK, but: 

‣  Beam line elements not incorporated in the simulation 
‣  Thermal neutrons are not accounted 
‣  Close to beam line: ~1034 cm-2s-1 over ~10 years would exceed ~1011 n/cm2  

BeAST geometry 
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Radiation dose from primary interactions  
The (primary) quantity: Esum = “a sum of dE/dx”/”cell volume” for N events 

-> crystal EmCal: up to 
~2*10-3 J/cm3 per fb-1  
(close to beam line) 

1 rad = 0.01 Gy & [Gy] = [J/kg] & PWO density ~8g/cm3 -> ~250 rad/year  
(at “nominal” luminosity ~1033 cm-2 s-1) 

-> looks OK? 

BeAST geometry 
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Beam-gas interaction 
‣  Produced by hadron beam particles scattered off residual gas (mostly H2) 

in the vacuum system 
‣  Dynamic vacuum problem: synchrotron radiation heats the IR vacuum 

chamber walls, this causes outgassing, and subsequent hadronic 
scattering in a “fixed target” fashion, which floods the detector with 
secondary particles -> very hard to model! 

Beam-gas events effect on the streaming readout @ EIC 

ePHENIX geometry 
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Synchrotron radiation 

JLEIC geometry 

‣  Crossing angle (no strong electron bending at the IP) does not solve the 
synchrotron radiation problem completely ... 

‣  ... because of the bending in Final Focusing Quads (FFQs) 

‣  Need either to increase the beam pipe diameter at the IP or install masks or both 

Synchrotron fan induced in FFQs hitting JLEIC SVT tracker after passing 24mm diameter mask at Z=-1m 

-> tedious optimization work is ongoing for both JLAB and BNL EIC designs 
34 



Summary 
•  Various preliminary EIC detector concepts developed 
•  To first order both physics- and accelerator-driven 

requirements are defined and taken into account 

•  Design optimization work is ongoing  
•  Close collaboration between theorists, experimentalists 

and accelerator physicists is required ... 
•  ... and contributions from the US and international 

institutions are more than welcome! 


