'EIC Yellow Report' kick-off meeting Physics/detector working group

Introduction

- The EIC covers a wide range of physics topics ! As described in EIC White Paper and NAS report, plus additions
- The goal is to provide input for detector design
- <u>Physics topics \rightarrow processes \rightarrow detector requirements</u>

- These slides are intended to start the discussion
- We anticipate further input from the SC, conveners of detector/physics WG, sub-conveners, this meeting, and the community

Thu 2:00pm — 3:45pm: gathering input from participants ! physics topics, processes / measurements, detector requirements, sub-conveners

3:45pm - 4:45pm: session for Physics-WG conveners

summarize input/discussion to present it at the plenary session

Physics/detector WG - organization

• Composed of multiple sub-groups led by sub-conveners (experts)

Organized by physics topics or processes
 as mentioned in EIC White Paper and NAS report + additions

• We assume several sub-conveners per group

Physics topics

- 1. Global properties and parton structure of hadrons
 - a. Spin structure of proton & neutron (spin sum rule, helicity distributions, transversity)
 - b. Mass of the nucleon and mesons
 - c. Multi-parton correlations (structure function g_2)
 - d. (Inclusive) diffraction
- 2. Multi-dimensional imaging of hadrons
 - a. GPDs and 3D-imaging (includes also Ji's sum rule, pressure and shear distributions)
 - b. TMDs and 3D-imaging
 - c. Wigner functions (includes, in particular, orbital angular momentum)
 - d. Form factors and 2D-imaging in position space

- 3. The Nucleus: A Laboratory for QCD
 - a. High parton densities and Saturation
 - b. Diffraction
 - c. Particle propagation through matter, energy loss
 - d. Collective effects (shadowing, anti-shadowing, ridge effect, other emergent phenomena)
 - e. Special opportunities with jets and heavy quarks
 - f. Short-range correlations, origin of nuclear force
 - g. Structure of light (polarized) nuclei
- 4. Understanding hadronization
 - a. Hadronization in the nuclear environment
 - b. Hadronization in the vacuum
 - c. Particle production for identified hadron species
 - d. Production mechanism for quarkonia and exotic states
 - e. Spectroscopy

- 5. Connections with other fields
 - a. Electro-weak physics (e.g. scale dependence of Weinberg angle)
 - b. Neutrino physics
 - c. Cosmic-ray / astroparticle physics
 - d. BSM physics (e.g. lepton flavor violation)
 - e. Other connections to pp/pA/AA
 - f. Lattice QCD

White Paper & NAS measurements

Processes↔ ↓ Topics	Inclusive	Semi-Inclusive	Jets, Heavy Flavor	Exclusive, Diffractive, Forward Tagging
Global properties and parton structure	Incl. SF	h, hh	j, Q	Incl. diffr., <mark>excl. J/Ψ, У</mark> , tagged DIS on pol. D/He
Imaging		h	j, jj, j+h, Q+Qbar, [QQbar]	Excl-DIS: DVCS, DVMP (J/Ψ, Υ, ρ ⁰ , φ, π+, Κ, ρ+, K*), Elastic scattering
Nucleus	Incl. SF	h, hh	j, jj, Q, [QQbar]	Diffr. SF, coh. & incoh. VM, jj, h, hh D/He FF, nucl. fragments
Hadronization		h, hh, j+h	j, Q	
Other fields		CC DIS, y-A total X- sec		γ-A diffr. X-sec γ-A elast. X-sec

Processes & detector requirements

Different science sub-groups may have similar detector requirements, e.g.

• (Semi-) Inclusive DIS:

PID up to high p_T , tracking, wide rapidity coverage (dihadron and dijet) (x,Q2,y) determination and resolutions, e-calorimetry (forward-e, barrel & forward-h) and h-calorimetry (barrel & forward-h)

• Jets and Heavy Flavors:

Vertex requirements & resolutions, barrel calorimetry, h-calorimetry, tracking to low p_T , PID

• Forward Tagging (deep exclusive, diffractive, tagging):

Centrality resolution, ZDC, roman pots, other forward detectors and forward-hadron tracking requirements, forward-hadron and barrel calorimetry segmentation

Goals during this meeting

- Discuss and setup the working group structure (by physics topics, by processes)
- Discuss the charge of the different working groups
- Gather input on people interested to join the different working groups
- Discuss a work plan:
 - Regular independent WG meetings, common meetings, etc
 - Milestones, (realistic) deliverables and timeline