Detector Working Group – Introductory Remarks

- Organization should be an organically grown structure open to all groups (new or already well-known in EIC efforts)
- Anticipate that this structure will evolve with time effectiveness has to be checked as the work begins
- The model assumes a strong simulation team that needs to go well beyond current activities

□ Need to engage strong electronics groups from the start

^{*}One additional sub-convener (to cover each of these distinct and evolving detector technologies)

Organizational Structure (I)

Assume a separate strong simulation team efforts working together with both Physics and Detector WGs

□ The organization starts from the references given:

- science as from EIC white paper,
- known detector requirements,
- listed introductory documents,
- detector-consortia related papers

The Central Detector here includes the central detector itself and both electron and proton/ion endcaps

The convention follows that of the EIC handbook, i.e., the p/ion (electron) direction is forward (backward)

The far-forward (and far-backward) region is defined as that after the final-focus quads

□ The Ancillary Detectors here includes both polarimeters and luminosity monitors. We hope the Polarimetry WG is willing to include the luminosity monitor scope.

Organizational Structure (II)

- We assume two sub-conveners each for particle identification detectors, calorimetry, and far-for/backward detectors (including tracking, Roman Pots, ZDCs, etc.). We assume one additional sub-convener for tracking detectors to cover the two technologies (vertexing and gaseous).
 - One of these sub-conveners concentrates more on the detector technology options and link with detector consortia, the second sub-convener on coordination with simulation team & integration groups.
 - > As first task, we would ask each of these groups to first start with listing pros and cons of possible detector technologies, and a general set of parameters associated with each linking to simulations.
- □ We assume *one sub-convener each for various overarching activities*: the central detector integration, the forward detector/IR integration, the readout- and computing-related activities, and the magnet field choice.
 - > We have indicated several further ongoing activities to integrate in such overarching activities.
 - As first task, we would ask these sub-conveners to list what integration activities are required over the next 6-12 months, what questions remain to be answered, and to initiate integration tasks.
- □ We assume the Infrastructure & Installation and the Complementarity of two detectors activities *start later, at the first workshop.* These logically pick up from the first tasks, e.g., the detector technologies option task may naturally lead to the Complementarity of two detectors (Detector WG conveners initially pick up scope).

Organizational Cartoon/Model of the Extended Detector and IR

far-backward e final- e detection focus quads	p/ion beam e beam "Central detector", includes e endcap, central, and p/ion endcap detectors	lon final- focus quads	••• far-forward h detection	forward dipole	far-forward h detection	forward dipole	far- forward h detection
Low-Q ² spectroscopy	Inclusive Structure Functions, TMDs, heavy flavors and jets, electrons for GPDs		Baryon decay π/K structure evaporated n		GPDs/DVCS, tagging, diffraction		lowest-t, diffraction
	····						_
GEMs Diamond detectors?	Vertex and Tracking detectors, particle identification detectors, calorimetry detectors, muon detectors, etc.		GEMs ZDCs e/γ calorim.		GEMs Roman pots e/γ calorim.		Roman pots GEMs?
	physics examples		detector exa	mples			

Detector WG Sub-conveners

System	Sub-convener names	Sub-convener task	Convener name
Tracking	1. 2. 3.	(vertex) detector technologies (gaseous) detector technologies simulation, integration coordination	(for oversight and coordination)
Particle Identification	1. 2.	detector technologies simulation, integration coordination	
Calorimetry (e + h)	1. 2.	detector technologies simulation, integration coordination	
Far-forward detectors	1. 2.	detector technologies Simulation, integration coordination	
Ancillary detectors	Polarimetry WG?	detector technologies	
Central detector integration	1.	integration tasks	
Forward detector/IR integration	1.	integration tasks	
Readout and Computing	1.	list of activities/tasks needed	
Magnet(s)	1.	field strength need, pros and cons	
Infrastructure and Installation	NA yet/conveners	NA yet	
Detector Complementarity	NA yet/conveners	NA yet	
Simulations (shared w. Physics WG)	1. – n.	work w. both WGs central to progress	

Detector WG Parallel Sessions

Thu 12/12

9:00	Welcome	Dichard MII NED		
	Kolker Room, MIT Laboratory for Nuclear Science	09:00 - 09:10		
	Introduction	Prof. Bernd SURROW		
	Kolker Room, MIT Laboratory for Nuclear Science	09:10 - 09:30		
	Organization: Physics/Detector Working Group			
	Kolker Room, MIT Laboratory for Nuclear Science	09:30 - 09:40		
	Organization: Detector/Physics Working Group			
	Kolker Room, MIT Laboratory for Nuclear Science	09:40 - 09:50		
	Organization: Accelerator Physics Experiments V	Working Group		
	Kolker Room, MIT Laboratory for Nuclear Science	09:50 - 10:00		
10:00	Introduction to eRHIC and JLEIC IR Concepts	Vasiliy MOROZOV et al		
	Kolker Room, MIT Laboratory for Nuclear Science	10.00 - 10-3/		
	Coffee Break			
		10.20 11.00		
1:00	Norker Koom, Mill Laboratory for Nuclear Science	Dr. Alavandar KISELEV at al		
	same of person negunencies	ur, elexander KISELEV et al.		
	Kolker Room, MIT Laboratory for Nuclear Science	11:00 - 11:30		
	Ancillary Measurements	Dr. Elke-Caroline ASCHENAUER et al.		
	Kolker Room, MIT Laboratory for Nuclear Science	11:30 - 11:45		
	Overview of ELC Generic Detector R&D Program	Dr. Thomas OLLRICH		
2.00	Kolker Room, M11 Laboratory for Nuclear Science	11:45 - 12:00		
	Kolker Room, MIT Laboratory for Nuclear Science	12:00 - 12:45		
	Lunch Break			
	Kolker Room, MIT Laboratory for Nuclear Science	Detector/Physics Working Group Conveners		
4:00	Parallel Session: Physics/Detector Working Group Detector/Phy	ion: Parallel Session: Accelerator Physics Experiments Working Group		
5:00				
6:00				
	Nuclear Science Vuclear Science	Nuclear Science		
	Coffee Break			
7:00	Kolker Boom, MIT Laboratory for Nuclear Science	16:45 - 17:15		

Initial time of parallel session (14:00-15:45) to gather input from attendants on proposed structure/organization and iterate.

Last hour (15:45-16:45) on Thursday will be a closed session for WG conveners only to settle on sub-convener names in face-to-face meeting.