

A Physics Case for the K-Long Facility

Michael Doering

QNP2022 - The 9th International Conference on Quarks and Nuclear Physics

Disclaimer: Only a small subset of physics motivations for the Klong facility can be presented. Selection is <u>subjective</u> and <u>incomplete</u>.

online

5-9 September 2022

Department of Energy, DOE DE-AC05-06OR23177 & DE-SC0016582

HPC support by JSC grant *jikp07*

National Science Foundation Grant No. PHY 2012289

Resources - Experiment

KLF Wiki page: [https://wiki.jlab.org/klproject/index.php/Main_Page]

- Overview of current experimental status: [Sean Dobbs 2022]
 - This talk is not about experimental status of approved KL experiment but provides some physics motivation for it.
 - See Wiki page for talks on experimental status.
- Whitepaper [2020] ; secondary meson beam whitepaper [Briscoe 2015]
- Collaboration meetings [6th Coll. Meeting Nov. 3, 2022]
- Extensive theoretical support:

Alexey Anisovich^{5,44}, Alexei Bazavov³⁸, Rene Bellwied²¹, Veronique Bernard⁴²,
Gilberto Colangelo³, Aleš Cieplý⁴⁶, Michael Döring¹⁹, Ali Eskanderian¹⁹, Jose Goity^{20,49},
Helmut Haberzettl¹⁹, Mirza Hadžimehmedović⁵⁵, Robert Jaffe³⁶, Boris Kopeliovich⁵⁴,
Heinrich Leutwyler³, Maxim Mai¹⁹, Terry Mart⁶⁵, Maxim Matveev⁴⁴, Ulf-G. Meißner^{5,29},
Colin Morningstar⁹, Bachir Moussallam⁴², Kanzo Nakayama⁵⁸, Wolfgang Ochs³⁷,
Youngseok Oh³¹, Rifat Omerovic⁵⁵, Hedim Osmanović⁵⁵, Eulogio Oset⁶², Antimo Palano⁶⁴,
Jose Peláez³⁴, Alessandro Pilloni^{66,67}, Maxim Polyakov⁴⁸, David Richards⁴⁹, Arkaitz Rodas^{49,56},
Dan-Olof Riska¹², Jacobo Ruiz de Elvira³, Hui-Young Ryu⁴⁵, Elena Santopinto²³,
Andrey Sarantsev^{5,44}, Jugoslav Stahov⁵⁵, Alfred Švarc⁴⁷, Adam Szczepaniak^{22,49},
Ronald Workman¹⁹, Bing-Song Zou⁴

Other experiments dedicated to strangeness

- J-PARC (see session on Nuclear Strangeness on Fr. 9/9, 8am)
 - E57, E62 [<u>T. Hashimoto (2019)</u>]
 - E15 [<u>Y. Sada et al. (2016)</u>, <u>T. Yamaga (2020)</u>]
 - Many experiments dedicated to the \overline{K} -nucleus potential
 - Related to possibility of $\overline{K}NN$ formation [<u>Akaishi 2002</u>];
 - Ongoing debate, e.g., [Magas (2006)]
- Low energies/scattering length: DAØNE/KLOE/AMADEUS:
 - Siddharta-2/Kaonic deuterium [<u>Miliucci (2021</u>)]
 - Amadeus (new data point of $K^-n \rightarrow \Lambda \pi^-$) [K.Piscicchia (2018)]
- CLAS-12: $\gamma p \to K^+(Y^* \to \pi \Sigma, \dots)$
- Panda (mostly *ΛN*, ...) [<u>Lutz (2009)</u>]
- Belle, Babar, Compass, LHCb,...<u>[Whitepaper 2020]</u>

Klong - the basics

- Klong is a *CP* eigenstate and superposition of strong eigenstates according to $K_L^0 = \frac{1}{\sqrt{2}}(K^0 - \overline{K^0}) \qquad K_S^0 = \frac{1}{\sqrt{2}}(K^0 + \overline{K^0})$
- Weak interaction allows for mixing of strong eigenstates: $K^{0} \xrightarrow[\mathbf{k}^{0}]{\mathbf{w}^{-}} \underbrace{\mathbf{w}^{-}}_{W^{+}} \underbrace{\mathbf{s}^{0}}_{W^{+}} \underbrace{\mathbf{s}^{0}}_{W^{+}} \underbrace{\mathbf{s}^{0}}_{W^{+}} \underbrace{\mathbf{s}^{0}}_{W^{+}} \underbrace{\mathbf{s}^{0}}_{W^{+}} \underbrace{\mathbf{s}^{0}}_{\mathbf{k}^{0}} \underbrace{\mathbf{s}^{0}}_{W^{+}} \underbrace{\mathbf{s}^{0}}_{\mathbf{k}^{0}} \underbrace{\mathbf{s}^{0}}_{\mathbf{k}^{0}$
- KL produces in general combinations of different isospin and strangeness channels, e.g.: $T(K_{*}^{0}n \rightarrow K_{*}^{0}n) = \frac{1}{2} \left(\frac{1}{2} T^{1}(KN \rightarrow KN) + \frac{1}{2} T^{0}(KN \rightarrow KN) \right) + \frac{1}{2} T^{1}(\overline{K}N \rightarrow \overline{K}N)$

$$T(K_L^0 p \to \pi^+ \Lambda) = -\frac{1}{\sqrt{2}} T^1(\overline{K}N \to \pi\Lambda)$$
[Manley 2016]

Hyperons at low energies: The $\Lambda(1405)$

Review by [M. Mai (2020)]

The two-pole nature of the $\Lambda(1405)$

• Consequence of coupled-channel $\pi\Sigma$, $\overline{K}N$ attractive dynamics

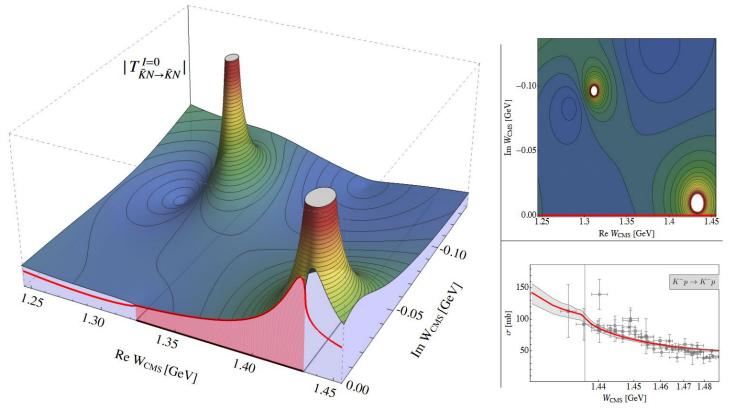


Figure from [M. Mai (2020)]

Decades-long interest in S=-1 low energy

- From Dalitz [<u>PRL 1959</u>] to NNLO treatment connecting all strangeness sectors [<u>J.-Xu Lu (2022)</u>]
- Main question: How does chiral dynamics dictate the low-energy, coupled-channel $\overline{K}N$ interaction?
 - Inherently non-perturbative
 - Expansion of chiral kernels to different chiral orders with subsequent unitarization
- Ten channels in isospin-0 and I=1, usually with mass differences

 $\pi^{0}\Lambda, \pi^{-}\Sigma^{+}, \pi^{0}\Sigma^{0}, \pi^{+}\Sigma^{-}, K^{-}p, \bar{K}^{0}n, \eta\Lambda, \eta\Sigma^{0}, K^{0}\Xi^{0}, K^{+}\Xi^{-}$

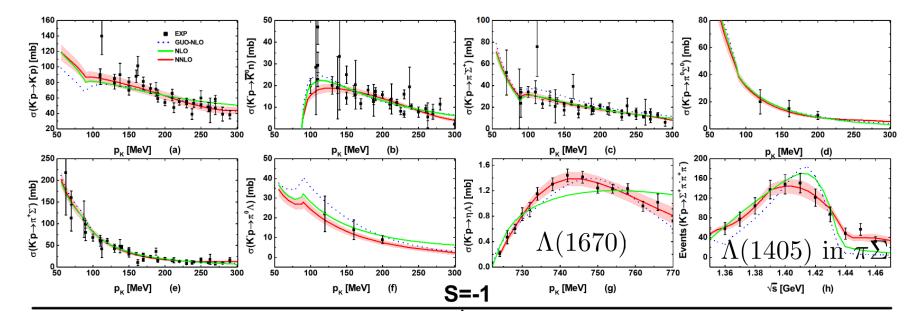
- Their interaction to
 - LO [<u>Kaiser (1995)</u>, <u>Oset (1998)</u>, <u>Oller (2001)</u>, <u>Jido (2003)</u>; ~700 citations each],
 - NLO [<u>Mai (2014)</u>, <u>Z. H. Guo (2012)</u>],
 - NNLO [J.-Xu Lu (2022)]
- Full Bethe-Salpeter equation

in [<u>Mai (2014)</u>]

Interconnecting meson-baryon strangeness sectors at NNLO [J.-Xu Lu, L.S. Geng, MD, Mai 2022]

• First simultaneous study of meson-baryon interaction of

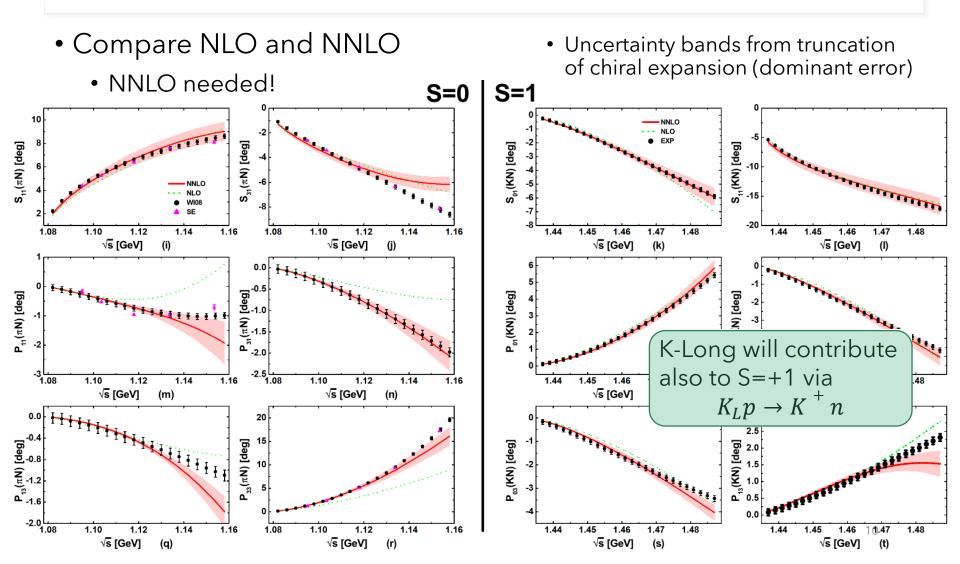
• Strangeness S=0:	(πN)	Perturbative	[SAID WI08 phases]
• S=+1	(KN)	Perturbative	[<u>SAID SP92]</u>
• S=-1:	$(\overline{K}N$ in 10 chann.)	Unitarized	exp. data


- Chiral convergence poor for S=0:
 - One really needs NNLO for a global analysis
 - extended-on-mass-shell (EOMS) formulation of BCHPT improves convergence in $\rm SU(3)_f$
- NNLO has more parameters (33) than NLO (20),
 - but interconnection of data sectors (for 1st time) leads to smaller uncertainties than NLO due to much larger, "orthogonal" data base.
- Smaller uncertainties than NLO analyses of individual sectors
- Estimation of truncation error of chiral expansion (for 1st time in meson baryon)
 - largest source of uncertainties [see talk by L.S. Geng on Monday, 9/5 on this topic] 8

[J.-Xu Lu 2022]

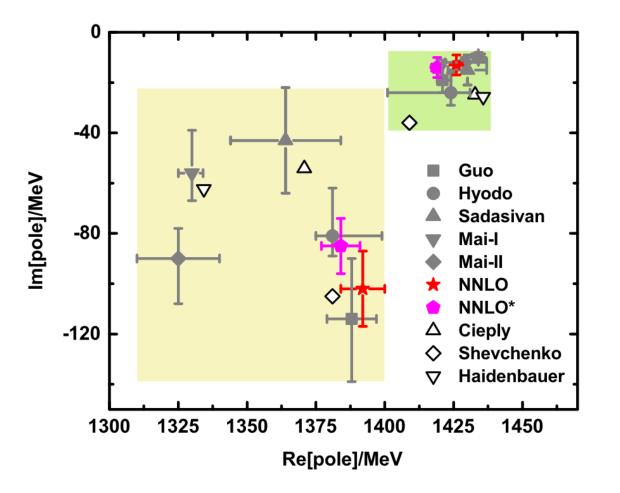
Results - Data description in S=-1

- Strangeness sector:
 - $x^2/dof = 1.56$ at NNLO with constraints from strangeness S=0 and S=+1
 - compare: $x^2/dof = 2$ at NLO [Z. H. Guo (2012)] without add. constraints



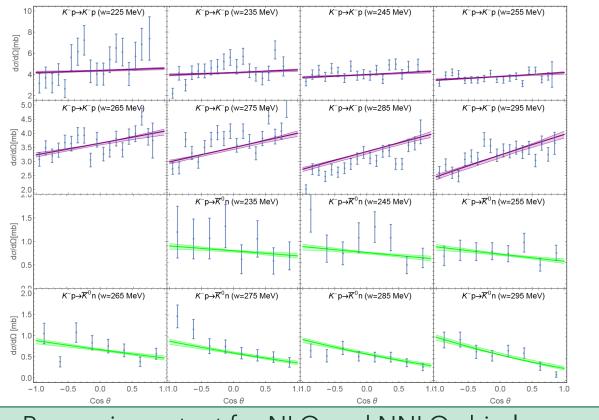
(and threshold quantities/not shown)

Results - PW description in S=0, +1


[J.-Xu Lu 2022]

Two-pole structure of $\Lambda(1405)$ **confirmed** [J.-Xu Lu 2022]

• with smaller uncertainties than at NLO, due to global data analysis.



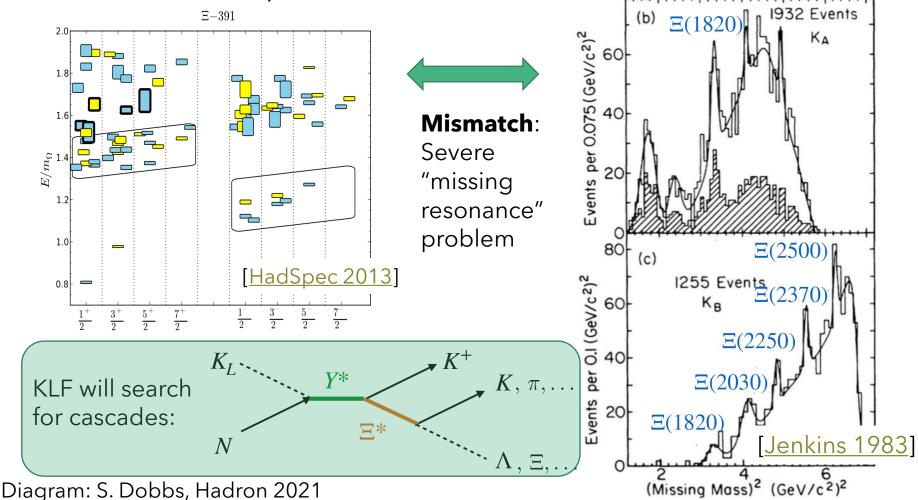
- NNLO: Main result
- **NNLO***: Fit without constraints from baryon masses

Klong will improve low-energy data situation

The only low-energy differential cross section available:

Data: [Mast 1976] NLO: [Sadasivan 2018]

P-wave important for NLO and NNLO chiral approaches
 Not everything is S-wave...!


Hyperon spectroscopy

Why Klong will not "just" add more data

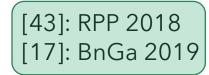
Klong for cascade baryons

• Most of our knowledge of cascade comes from beam experiments in the 60s–80s, with little new until recently. $K^-p \to K^+X$

Phenomenological interest in kaon-induced reactions: hyperon spectrum

Almost all major analysis groups have turned to perform partialwave analyses of the strangeness -1 sector

- Kent state group/Manley [Zhang 2013]
- ANL/Osaka
 [Kamano 2014]



- Joint Physics Analysis Center (JPAC) [Fernandez 2016]
- Bonn-Gatchina (BnGa) group [<u>Matveev 2019</u>]
 - Notably, includes analys of $K^{-}p \rightarrow$ quasi-two-body states [Matveev 2019]
 - Kp $\rightarrow \pi \Lambda(1520), \ \bar{K}\Delta(1232), \ \pi \Sigma(1385), \ \bar{K}^*N, \ \text{and} \ \omega \Lambda.$
- Juelich-Bonn group [Roenchen, in preparation] building on
 - Previous Juelich model [<u>Haidenbauer 2010</u>]

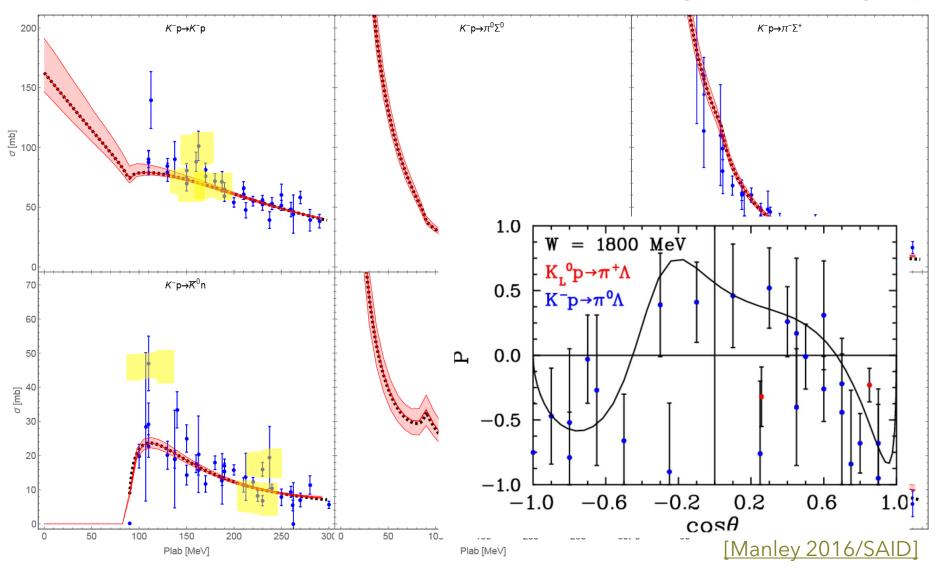
Changes of hyperon spectrum by BnGa

	43	[17]		[43]	[17]
$\Lambda(1405)1/2^{-}$	****	****	$\Sigma(1580)3/2^-$	*	-
$\Lambda(1520)3/2^{-}$	****	****	$\Sigma(1620)1/2^-$	*	(*)
$\Lambda(1600)1/2^{+}$	***	****	$\Sigma(1660)1/2^{+}$	***	***
$\Lambda(1670)1/2^{-}$	****	****	$\Sigma(1670)3/2^-$	****	****
$\Lambda(1690)3/2^{-}$	****	****	$\Sigma(1730)3/2^{+}$	*	-
$\Lambda(1710)1/2^{+}$	*	-	$\Sigma(1750)1/2^-$	***	****
$\Lambda(1800)1/2^{-}$	***	***	$\Sigma(1770)1/2^{+}$	*	-
$\Lambda(1810)1/2^{+}$	***	(*)	$\Sigma(1775)5/2^-$	****	****
$\Lambda(1820)5/2^{+}$	****	****	$\Sigma(1840)3/2^{+}$	*	-
$\Lambda(1830)5/2^-$	****	***	$\Sigma(1880)1/2^{+}$	**	-
$\Lambda(1890)3/2^+$	****	****	$\Sigma(1900)1/2^-$	*	**
$\Lambda(2000)$	*	-	$\Sigma(1915)5/2^{+}$	****	****
$\Lambda(2020)7/2^{+}$	*	-	$\Sigma(1940)3/2^{+}$	*	-
$\Lambda(2050)3/2^-$	*	-	$\Sigma(1940)3/2^-$	***	***
$\Lambda(2070)3/2^{+}$	-	*	$\Sigma(2000)1/2^-$	*	-
$\Lambda(2080)5/2^-$	-	*	$\Sigma(2000)3/2^-$	-	*
$\Lambda(2100)7/2^-$	****	****	$\Sigma(2030)7/2^{+}$	****	****
$\Lambda(2110)5/2^{+}$	***	**	$\Sigma(2070)5/2^{+}$	*	-
			$\Sigma(2080)3/2^{+}$	**	-
			$\Sigma(2100)7/2^-$	*	*
			$\Sigma(2160)1/2^-$	-	*

The Σ "bumps" at 1480 (*), 1560 (**), 1690 (**) MeV and the claims at 1620 and 1670 MeV from production experiments are also not seen.

[Matveev 2019]

Data consistency - the problem


- All these analysis would greatly benefit from new data
 - Better constraints on baryon masses, widths and branching ratios
 - Better constraints on the existence of new states
- Typical $x^2/dof \sim 1.5$ in best case: This is a bad value!
 - It indicates that the fit is highly improbably given the data
 - ... Under the assumption the data are *consistent*. Which they are not.
- High values of x^2 make quantitative statements of likeliness of existence of resonances impossible
- Data base dominated by systematic uncertainties
 - Many different experiments, from different decades, using different techniques.
 - Data from those experiments are sometimes not overlapping in kinematics

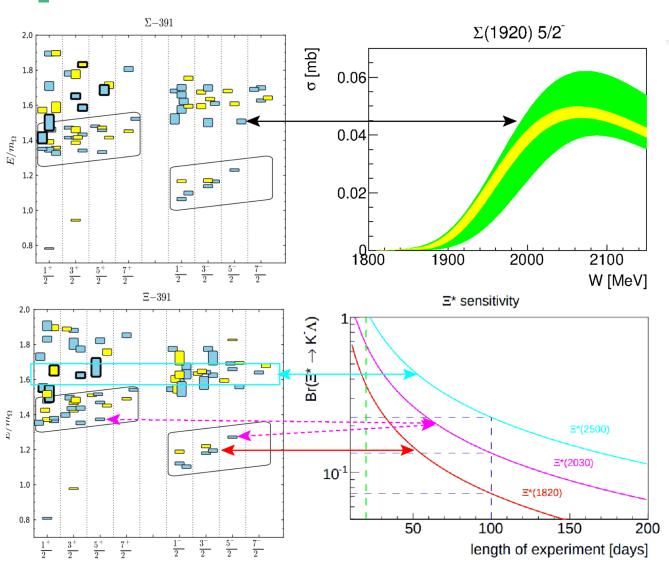
 no way to uniquely rule out data
 - Gross mismatch of size of data sets from different observables

A closer look at the problem

[Sadasivan 2018]

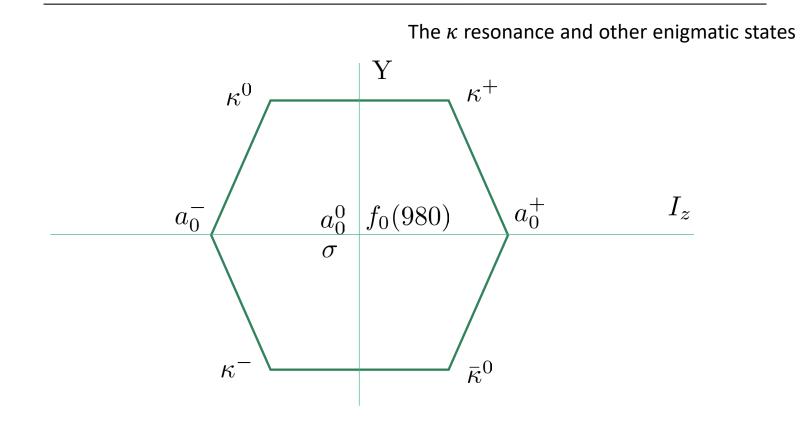
Contributions from K-Long

- K-Long will not only increase the data base
- It will provide a large **consistent** data base
- Will provide realistic chance to control systematic error by standard methods (data "floating" not performed by any analysis, so far → See SAID and Juelich-Bonn-Washington/JBW analysis)
- Will provide a chance to realistically model the systematic error:
 - Additive?
 - Multiplicative?
 - How distributed?
 - What prior is best (model distribution of uncertainty)
- Quantitative statements on resonance properties & existence might become possible
- Similar situation challenge in πN sector [<u>Briscoe 2015</u>]



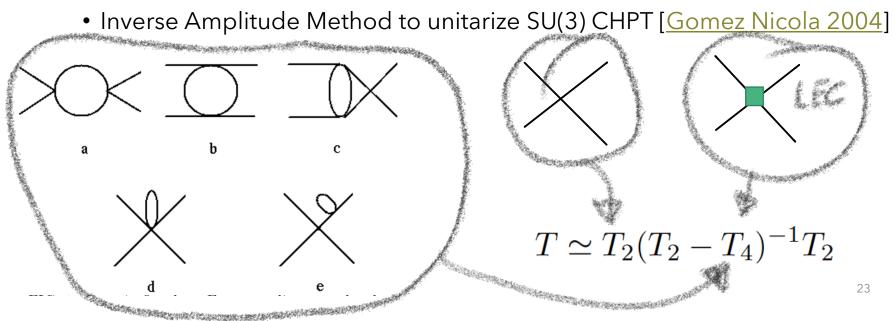
Klong: two-body reactions

- Proton target: only Σ^*
 - $K_L p \to K_S p$
 - $K_L p \to \pi^+ \Lambda$
 - $K_L p \to K^+ \Xi^0$
 - $K_L p \rightarrow \pi^0 \Sigma^+$
 - $K_L p \rightarrow \eta \Sigma^+$
 - $K_L p \to \omega \Sigma^+$
- Neutron target: Λ^* and Σ^*
- Observables:
 - Differential cross section
 - Self-polarization from hyperon decay
 - ... depends on α_ which has changed [BESIII (2019), Ireland 2019]



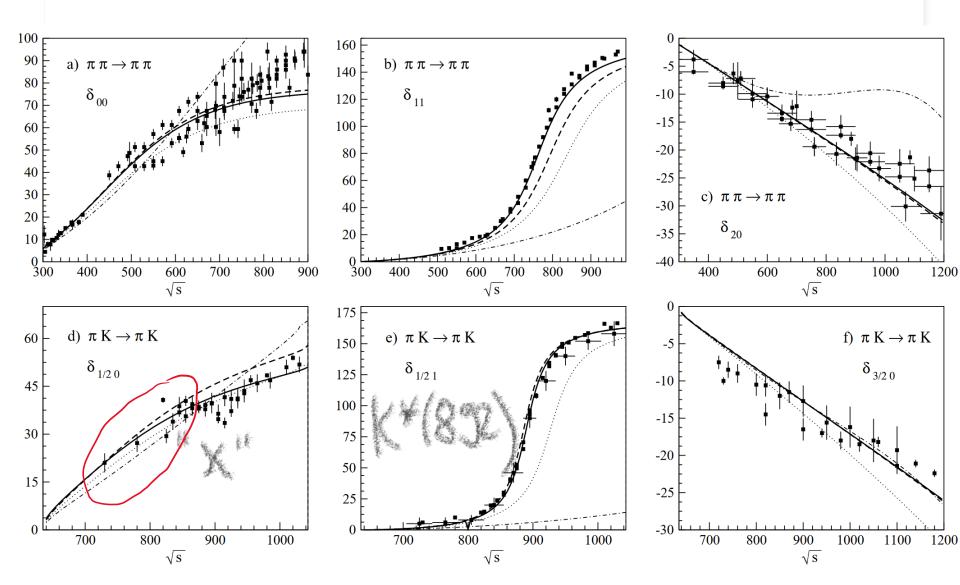
Discovery potential & projected sensitivity

- Left: Lattice prediction
 [HadSpec 2013]
- **Upper right**: Simulated cross section for resonance assuming 20 and 100 days of run time (using BnGa)
- **Lower right**: Estimate of minimal measurable branching ratios of some resonances
- With 100 days of run time, resonances with BR >4% seem to be accessible
- Irregular shapes require potentially more.


Meson spectroscopy

Kaon-pion scattering

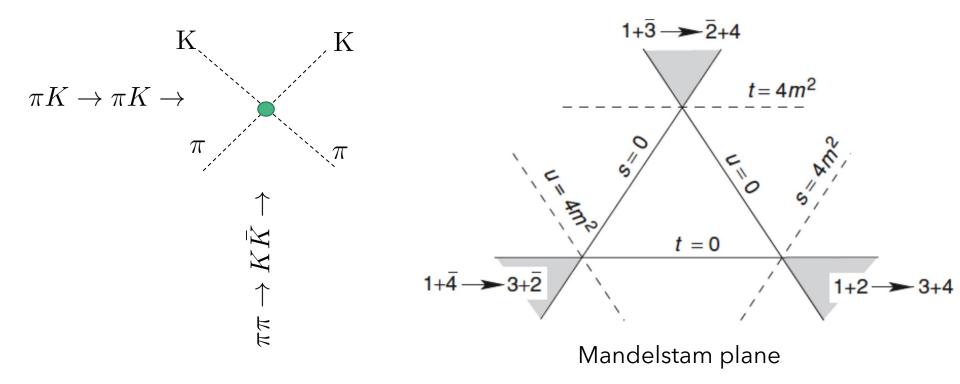
- One of the prime subjects of CHPT
- How does CHPT converge for SU(3)_f compared to $\pi\pi$?
 - Worse convergence
- CHPT calculations to one [Bernard 1991] and two loops [Bijnens 2004]
- Not necessarily low energies only:



IAM and data

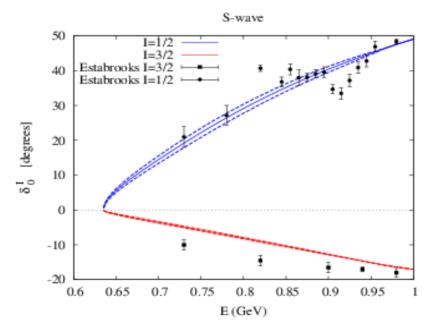
[Nebreda 2010]

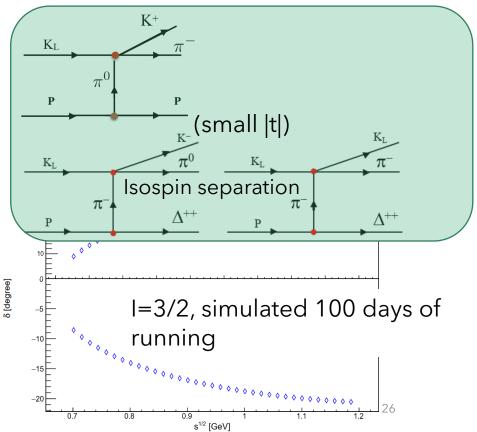
Large body of theory references!



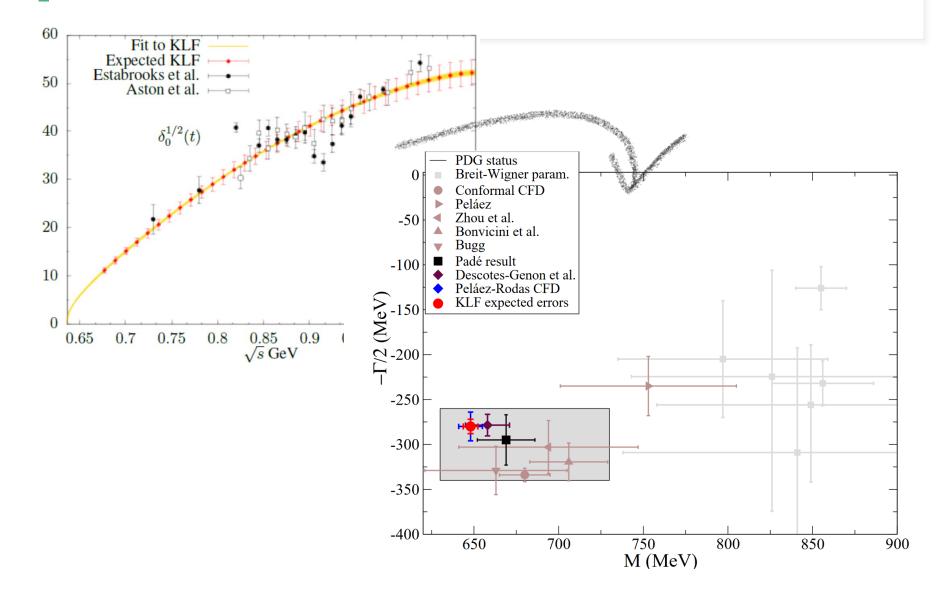
Dispersive approaches

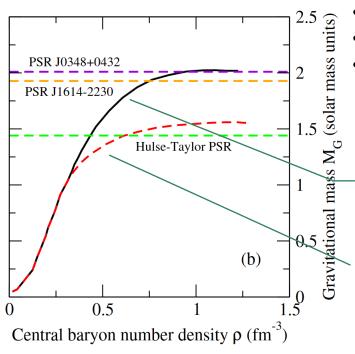
E.g.: [Buettiker 2004]/dispersive etc.


 Relating s-channel and t-channel processes at constant b=us to a tower of coupled equations of partial waves:



How K-Long can improve data situation


- Very inferior $\pi K \rightarrow \pi K$ low-energy scattering data to date
- Sizable tension between scattering lengths from dispersive analyses and lattice QCD data
- K-Long will specifically improve the low-energy situation

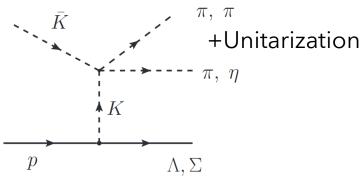


How the κ pole position will improve

More aspects of strangeness physics

- K-induced production of a₀, f₀
- Neutron-induced reactions: Elastic *np* scattering
- The YN interaction for neutron stars and hypernuclei
- (Semileptonic decays of \land)

Without hyperons

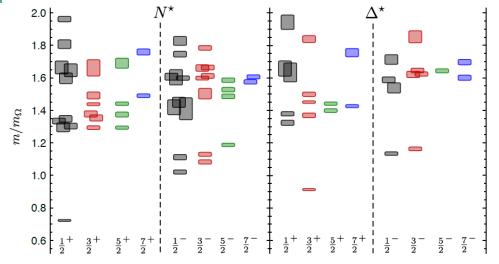

With hyperons: softer EOS/ smaller max. mass

$$K_L p \to \pi^+ \Lambda / \Sigma \Rightarrow Y N \to Y N$$

Kaon-induced two-meson production

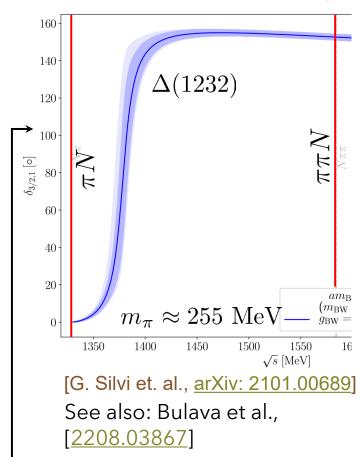
- $a_0(980)$ and $f_0(980)$ are enigmatic S-wave resonances
 - Dynamically generated [Oller 1999]
 - Hadronic molecules [Baru 2004] [Guo 2018]
 - Both couple strongly to $\overline{K}K$
 - a₀-f₀ mixing through isospin breaking [<u>BesIII</u>] [<u>Tarasov 2013</u>]
- K-Long "specific" reactions $K^-p \rightarrow \Lambda \pi^+\pi^-$, $\Sigma^0\pi^+\pi^-$, $\Lambda \pi^0\eta$, $\Sigma^0\pi^0\eta$, $\Sigma^+\pi^-\eta$
 - Similarly: $\overline{K^0}p \rightarrow [...] \quad [\underline{J.-J. Xie 2016}]$

- Opportunity to study couplings of these resonances to $\pi\pi, K\overline{K}, \pi\eta$
- E.g.: $f_0(500)$ weak coupling to $K\overline{K}$, but $f_0(980)$ strong coupling


Summary

- Hyperons and Cascades: Significant theoretical interest in spectrum of excited states through
 - Lattice QCD predictions *missing resonance problem* clearly revealed for S=-1, but even more strikingly for S=-2 baryons.
 - (Unitarized) CHPT continuous activity to understand low-energy QCD dynamics
 - Phenomenological analysis groups almost all groups analyzed strangeness sector in recent years. Analysis pipeline established.
- Meson spectroscopy
 - Symmetries and scalar multiplets require a light scalar with strangeness: the κ .
 - Continuous theory interest by lattice, (unitarized) CHPT, dispersive methods/Roy-Steiner equations
- Klong will make crucial contributions to these questions and help resolve decades-old problems related to inconsistent, sparse data bases theory relies on.

(spare slides)

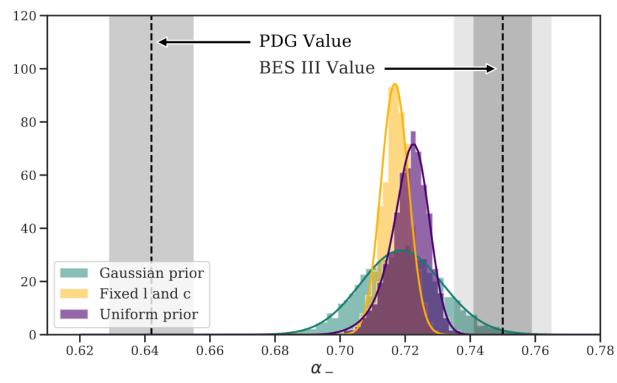


Lattice QCD for excited baryons: S=0

 $m_{\pi} = 396 \text{ MeV} [\text{Edwards et al., Phys.Rev. D84 (2011)}]$

- Pioneering spectroscopic calculations, but
- Information on existence, width & properties of resonances requires
 - Meson-baryon interpolating operators
 - Detailed finite-volume analysis

Determination of α_{-} **from CLAS data**


[D.G. Ireland/ JBW, PRL (2019)]

Fierz identities for polarization observables

$$O_x^2 + O_z^2 + C_x^2 + C_z^2 + \Sigma^2 - T^2 + P^2 = 1$$

 $\Sigma P - C_x O_z + C_z O_x - T = 0$.

$$\begin{aligned} \mathcal{F}_{i}^{(1)} =& a^{2}l^{2} \left(\mathcal{O}_{x,i}^{2} + \mathcal{O}_{z,i}^{2} - \mathcal{T}_{i}^{2} \right) \\ &+ a^{2}c^{2} \left(\mathcal{C}_{x,i}^{2} + \mathcal{C}_{z,i}^{2} \right) + l^{2} \Sigma_{i}^{2} + a^{2} \mathcal{P}_{i}^{2} , \\ \mathcal{F}_{i}^{(2)} =& al \left[\Sigma_{i} \mathcal{P}_{i} - \mathcal{T}_{i} - ac(\mathcal{C}_{x,i} \mathcal{O}_{z,i} - \mathcal{C}_{z,i} \mathcal{O}_{x,i}) \right] \end{aligned}$$

- Leads to a new value for asymmetry α_-
- Implications for CP violation
- change of data base for most measured pol. observables

