Run: 23099024 EventId: 1731 p+p at 510 GeV

STAR Forward Rapidity Upgrade

Daniel Brandenburg for the STAR Collaboration The 9th Quarks and Nuclear Physics Conference Wednesday, September 7th, 2022

STAR Forward Rapidity Upgrade : Overview

STAR Forward Rapidity Upgrade : Physics Program

Cold QCD

- p+p 510 GeV (2022) and p+p & p+Au 200
 GeV (2024)
- Sivers asymmetries for hadrons, (tagged) jets, and di-jets
- Gluon PDFs for nuclei: RpA for direct photons & DY
 - Tests of Saturation predictions through dihadrons, γ-jets

Hot QCD

- Au+Au 200 GeV (2023 and 2025)
- Temperature dependence of viscosity through flow harmonics up to $\eta \sim 4$
- Longitudinal decorrelation up to $\eta \sim 4$
- Global Lambda Polarization: test predictions of strong rapidity dependence ...

Observables

- Charged and neutral hadrons
- Inclusive jets and di-jets
- Lambda polarization
- Mid-forward and forward-forward rapidity correlations

The Forward Silicon Tracker (FST)

Structure

- 3 Silicon disks: at 152, 165, and 179 cm from the interaction point
- Locate inside STAR TPC cone
- Single-sided double-metal mini-strip sensors
- Granularity: fine in ϕ and coarse in R
- Material budget: ~1% per disk

Sensors & Electronics

Si from Hamamatsu Frontend chips: APV25

Built on successful experience with STAR Intermediate Silicon Tracker (IST)

Reused components: IST DAQ system IST cooling system

Forward Silicon Tracker : Module Design

Split Module Design

- Inner-region: 5<R<16.5 cm
 - 1 Kapton flexible hybrid
 - 1 Si sensor: 128 x 4 ($\phi \times R$) strips
 - 4 APV chips
- Outer region: 16.5 < R < 28 cm
 - 1 Kapton flexible hybrid
 - 2 Si sensor: 128 x 4 ($\phi \times R$) strips
 - 4 APV chips

Mechanical Structure

- PEEK (main structure + tube holder)
- Stainless steel (cooling tubes)
- Aluminum (heat sinks)

Total material budget : $\sim 1\% X_0$ per disk

Module Assembly

- 1. Gluing inner/outer hybrids and mechanical structures together
- 2. Mount/wire-bond APVs and Silicon sensors on hybrids

Daniel B

Forward Silicon Tracker : Module Design

2

FST pre-installation & Tests

- FST modules installed into the support structure in the clean room (April July 2021).
- Survey was done after each half plane completed (mid-plane has surveyed both sides).
- Readout and cooling test in the clean room for all 36 installed modules.

Installation into STAR West side

Installation completed on 08/13/2021

Forward Silicon Tracker : Operation

- Operation HV: 140V for inner sensor and 160V for outer sensors
- FST was commissioned took datain STAR run 22

The Forward sTGC Tracker (FTT)

Structure

- 4 sTGC disks: at 307, 325, 343 and 361 cm from IP
- Locate inside STAR magnet pole tip opening
 - Inhomogeneous magnetic field
 - 4 quadrants double sided sTGC => 1 layer
 - Diagonal strips to break ambiguities in the hit location

Specifications

- Position resolution: ~100µm
- Material budget: ~0.5% per layer
- Readout: based on VMM-chips
- => Based on ATLAS design

Forward sTGC Tracker : Electronics

- Read Out Driver modules are designed based on Standard VME 6U Crate (with DC power supply)
- 16 ROD module => one for every 6 FEBs & 1 quadrant
- Front-End Boards are designed based on VMM-3A chips. 4 VMM-3A chips/board, 212 channels
- 96 FEBs => 24 FEBs for each layer

Forward sTGC Tracker : Gas & Safety

Gas Cabinet

Gas Distribution Panel

Gas Purity Analyzer

- FTT use a mixture of CO2 and n-pentane
- n-pentane isomer formula C5H12
- Extreme care needed for the highly flammable npentane! Flash point –49 0C; explosive limits 1.5 – 7.8%
- Boiling point of 36.1 0C further complicates things
- Has operated extremely well through major power failures and big storms

Forward sTGC Tracker : Installation

Forward sTGC Tracker : Opperation

- Operation HV: 1500 V for standby and 3000 V for data taking
 Safety and gas mixing is automated through interlock logic
 Refill pentane, every three weeks by experts
 CO2 change every two months by experts

- Backed up by reserve tank online—no run out
 FTT is commissioned and currently taking data at STAR run22

Forward Tracking Performance

The Forward Calorimeter System (FCS)

Entire FCS (ECal + HCal + electronics) was installed during 2020

Commissioned during Run 21

ECA

Extensive running with Au+Au at $\sqrt{s_{NN}} = 7.7 \text{ GeV}$

Location: 7 m from the IP on the "FMS platform" Readout: SiPMs

- Used in Trigger
- Split in 2 movable halves inside and outside of ring
- Slightly projective

ECAL:

- reuse PHENIX PbSC calorimeter
 - 1496 channels: 5.52 x 5.52 x 33 cm3
 - 66 sampling cells with 1.5 mm Pb/4 mm Sc
 - 36 wavelength shifting fibers per cell
 - 18 X0; 0.85 λ
- replaced PMTs with SiPM readout

HCAL:

HCA

- Fe/Sc (20mm/3 mm) sandwich.
 - 520 readout channels: 10 x 10 x 84 cm3
 - ~ 4.5 λ
- Uses same SiPM readout as ECAL
- In close collaboration with EIC R&D

Preshower:

Use EPD => split signals, using FCS readout & trigger rg | STAR Forward Upgrade boards 16

Forward Calorimeter Assembly

September 7th, 2

Forward Calorimeter Readout & Commissioning

Commissioning during Run 21

- Exercised the on-line data quality monitoring, and slow controls
- Off-line software and Monte Carlo also in place Trigger system fully commissioned
- System fully ready at Day-1 for Run 22 Day-1

Forward Calorimeter Performance

STAR Forward Upgrade : Summary

- Despite COVID, all of the Forward upgrade subsystems were installed on time
- All forward detectors were commissioned on time and were ready to take data in RHIC Run 22
- Thanks and Congratulations to those who made this happen!
- Looking forward to Au+Au (2023 & 2025) and p+p & p+Au (2024) with STAR forward upgrades

STAR Forward Upgrade Institutions

Dedicated personnel for each subsystem

and the STAR collaboration, which stands enthusiastically behind the upgrade

Thanks for your attention!