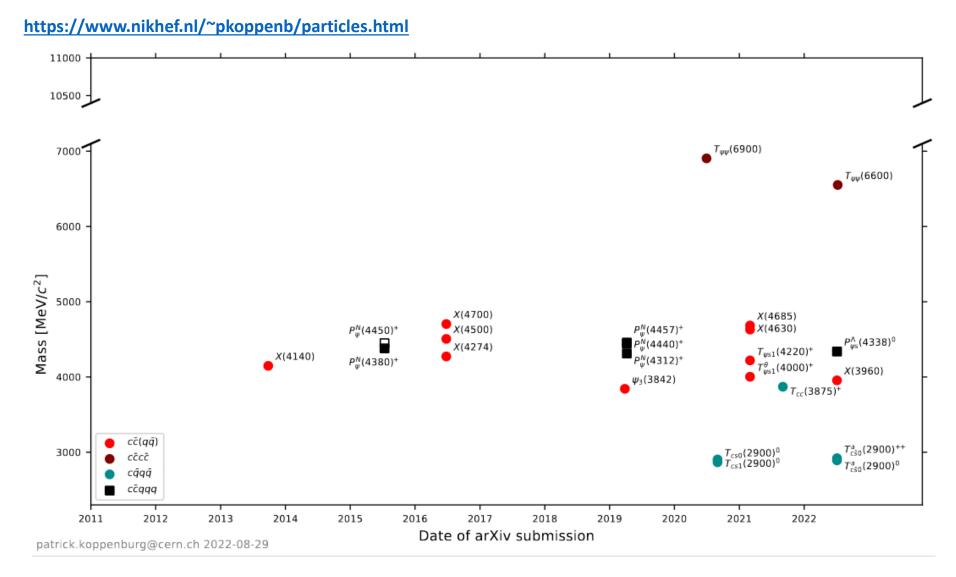
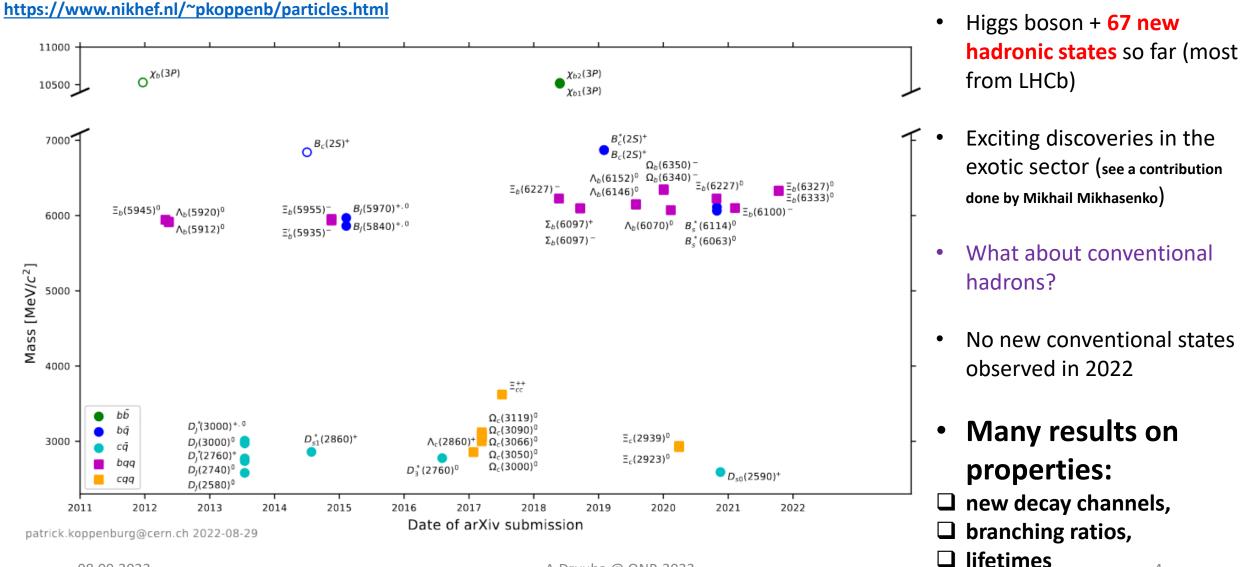


Hadron spectroscopy at LHCb (recent results)

Alexey Dzyuba¹ on behalf of LHCb Collaboration ¹ NRC KI – PNPI 8th of September 2022, QNP-2022 – virtual


New particles discovered at the LHC

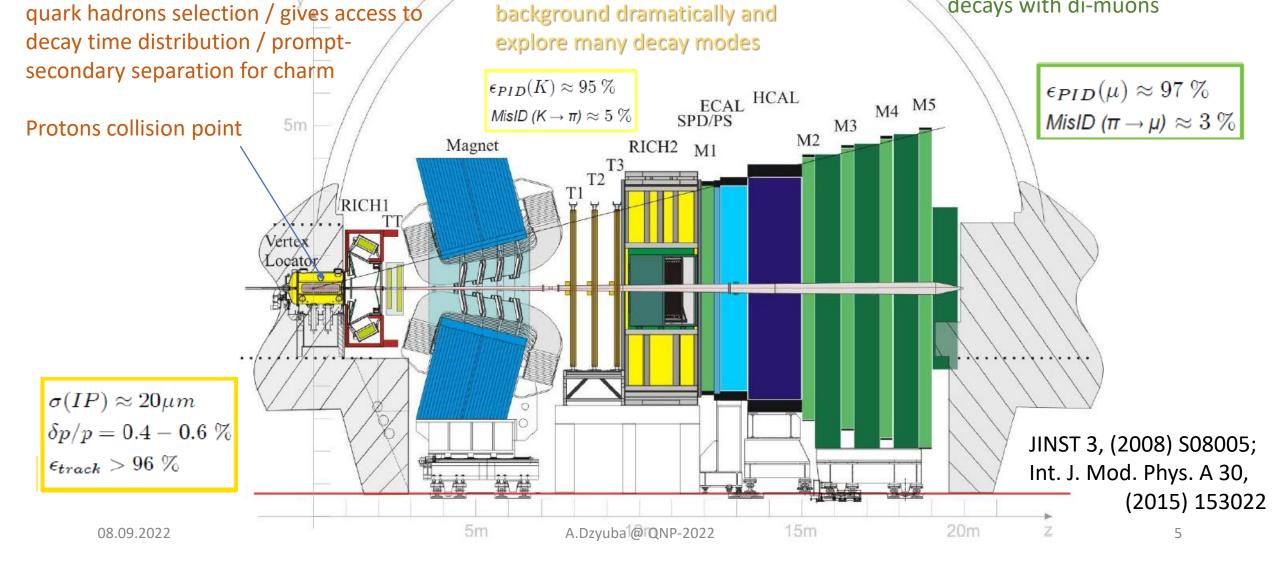
 Higgs boson + 67 new hadronic states so far (most from LHCb)


08.09.2022

New exotic hadrons discovered at the LHC

- Higgs boson + 67 new hadronic states so far (most from LHCb)
- Exciting discoveries in the exotic sector (see a contribution done by Mikhail Mikhasenko)
- What about conventional hadrons?

New conventional hadrons discovered at the LHC

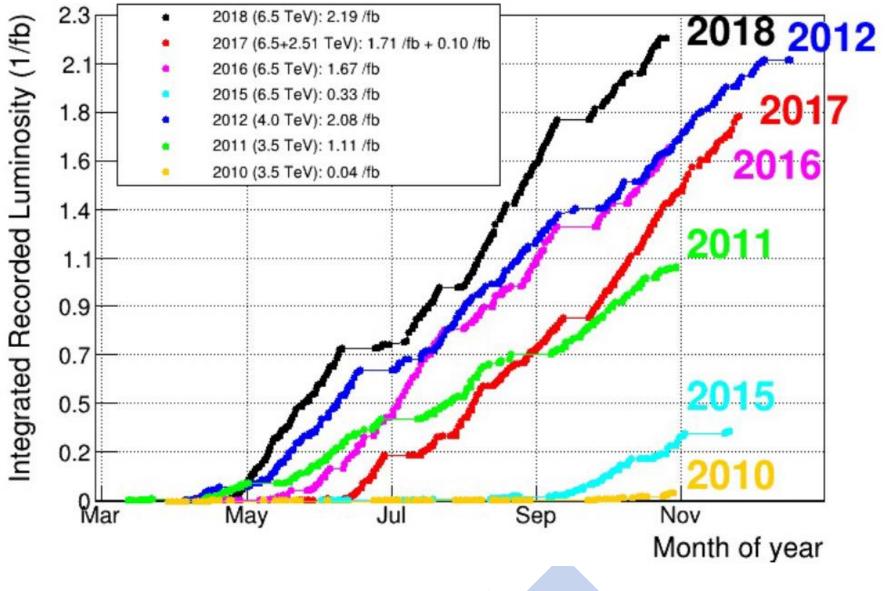

4

LHCb: Find \ Identify \ Measure

Excellent vertexing allows efficient heavy

Excellent tracking

Muon system – nice tagging & great potential to search for rare decays with di-muons



Excellent PID allows to suppress

background dramatically and

LHCb data taking

- ✓ Run-I (2010-12):
 - 1 fb⁻¹ at 7 TeV
 - 2 fb⁻¹ at 8 TeV
- ✓ Run-II (2015-18):
 - 6 fb⁻¹ at 13 TeV
- ≻ Run-III
 - emerging now

08.09.2022

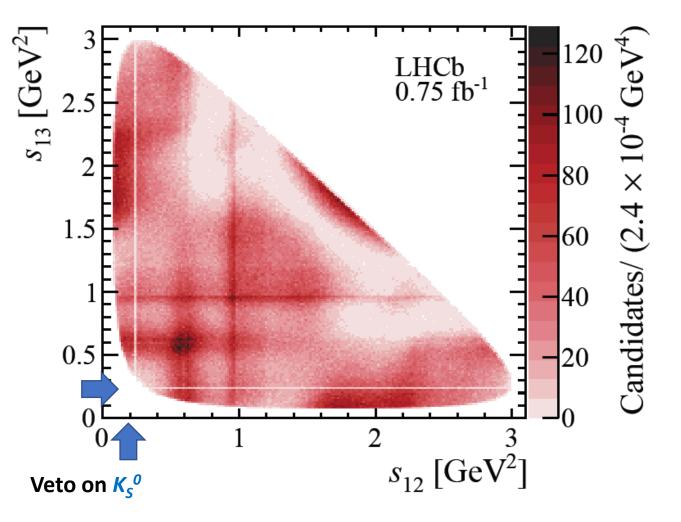
$\square B_{c}^{+}$ into charmonia and many hadrons arXiv:2208.08660 \Box Intermediate charmonia contributions in $B^+ \rightarrow J/\psi \eta K^+$ arXiv:2202.04045 \Box Measurement of τ_i using the $B_s^0 \rightarrow J/\psi \eta$ arXiv:2206.03088 • Search for the rare baryonic decay $B_{c}^{0} \rightarrow p\bar{p}$ arXiv:2206.06673 \bigstar Study of $B^+ \rightarrow \Lambda_c^+ \overline{\Lambda_c^-} K^ \succ$ Search for $\Xi_{\rm hc}^+ \rightarrow J/\psi \Xi_c^+$ arXiv:2204.09541 \succ Observation of $\Xi_{cc}^{++} \rightarrow \Xi_{c}^{'+}\pi^{+}$ JHEP 05 (2022) 038 A.Dzyuba @ QNP-2022

Recent spectroscopy results for conventional hadrons

- I) Amplitude analyses for charm hadron decays
 - ✓ Amplitude analysis of $D^+ \rightarrow \pi^- \pi^+ \pi^+$
 - \checkmark Amplitude analysis of $\Lambda_c^+ \rightarrow p K^- \pi^+$

• II) Decays of **B** mesons into charmonia and light hadrons

• III) Baryonic decays of **B** mesons

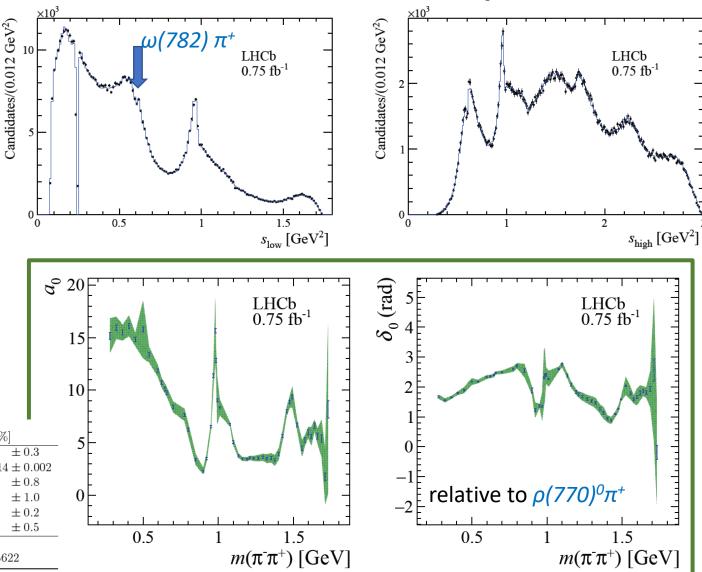

• Baryons which contain two heavy quarks

arXiv:2208.03300 arXiv:2208.03262

LHCb-PAPER-2022-028 (in preparation)

Amplitude analysis of the $D^+ \rightarrow \pi^- \pi^+ \pi^+$ decay

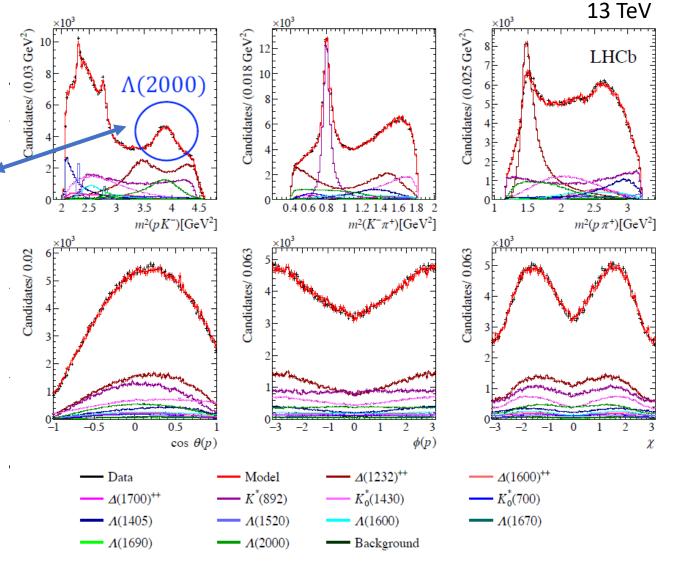
- 8 TeV sample collected in 2012 during Run-I data taking
- The sample contains ~600k candidates with a signal purity of 95%.
- Resonant structure from the Dalitz plot analysis (s_{1i} : $1 = \pi^-$, $i = \{2,3\}$ randomly assigned π^+)
- S-wave amplitude is extracted as a function of π⁻π⁺ mass, and spin-1 and spin-2 resonances coherently included (isobar model)
- Quasi model dependent partial wave analysis



Amplitude analysis of the $D^+ \rightarrow \pi^- \pi^+ \pi^+$ decay

$$\mathcal{A}(s_{12}, s_{13}) = \left[\mathcal{A}_{\text{S-wave}}(s_{12}) + \sum_{i} a_{i} e^{i\delta_{i}} \mathcal{A}_{i}(s_{12}, s_{13})\right] + (s_{12} \leftrightarrow s_{13}),$$
$$\mathcal{A}_{\text{S-wave}}(s_{12}) = a_{0}(s_{12})e^{i\delta_{0}(s_{12})},$$

- The S-wave component is found to be dominant
- Significant contribution from followed by the $\rho(770)^0\pi^+$ and $f_2(1270)\pi^+$ components.
- A small contribution from the $\omega(782)$ decay is seen for the 1st time in the $D^+ \rightarrow \pi^- \pi^+ \pi^+$ decay


Component	Magnitude	Phase [°]	Fit fraction [%]			
$\rho(770)^0\pi^+$	1 [fixed]	0 [fixed]	26.0	± 0.3	± 1.6	± 0.3
$\omega(782)\pi^+$	$(1.68 \pm 0.06 \pm 0.15 \pm 0.02) \times 10^{-2}$	$-103.3 \pm 2.1 \pm 2.6 \pm 0.4$	0.10	3 ± 0.00	8 ± 0.01	4 ± 0.002
$\rho(1450)^0\pi^+$	$2.66 \pm 0.07 \pm 0.24 \pm 0.22$	$47.0 \pm 1.5 \pm 5.5 \pm 4.1$	5.4	± 0.4	± 1.3	± 0.8
$\rho(1700)^0\pi^+$	$7.41 \pm 0.18 \pm 0.47 \pm 0.71$	$-65.7 \pm 1.5 \pm 3.8 \pm 4.6$	5.7	± 0.5	± 1.0	± 1.0
$f_2(1270)\pi^+$	$2.16 \pm 0.02 \pm 0.10 \pm 0.02$	$-100.9\pm0.7\pm2.0\pm0.4$	13.8	± 0.2	± 0.4	± 0.2
S-wave			61.8	± 0.5	± 0.6	± 0.5
$\sum_{i} FF_{i}$				1	12.8	
χ^2/ndof (range)	[1.47 - 1.78]			$-2\log \lambda$	C = 8056	522

Amplitude analysis of the $\Lambda_c^+ \rightarrow pK^-\pi^+$ decay

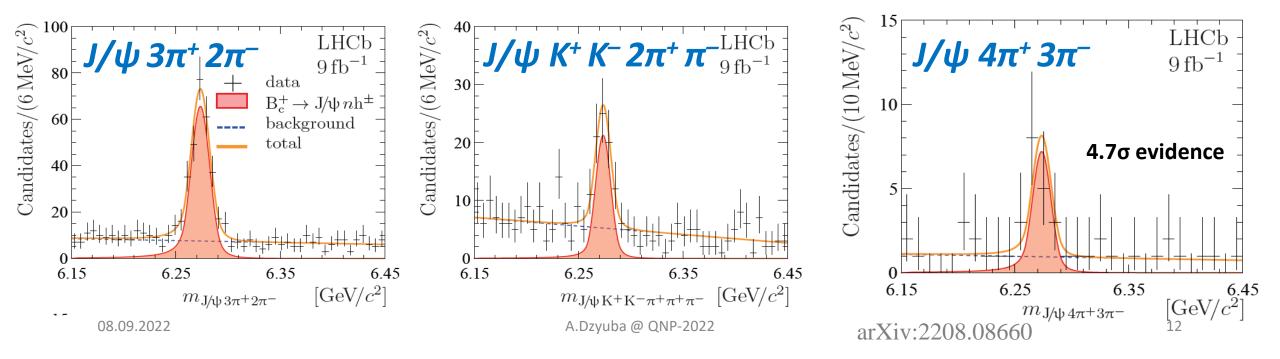
- 400k candidates from semileptonic b-decays
- Purity of the sample: 98.3%
- All parameters of the amplitude model reported
- M = 1988±2±21MeV, Γ = 179±4±16 MeV, J^P=1/2⁻

Resonance	J^P	Mass (MeV)	Width (MeV)
$\Lambda(1405)$	$1/2^{-}$	1405.1	50.5
$\Lambda(1520)$	$3/2^{-}$	1515 - 1523	10 - 20
$\Lambda(1600)$	$1/2^{+}$	1630	250
$\Lambda(1670)$	$1/2^{-}$	1670	30
$\Lambda(1690)$	$3/2^{-}$	1690	70
$\Lambda(2000)$	$1/2^{-}$	1900 - 2100	20 - 400
$\Delta(1232)^{++}$	$3/2^{+}$	1232	117
$\Delta(1600)^{++}$	$3/2^{+}$	1640	300
$\Delta(1700)^{++}$	$3/2^{-}$	1690	380
$K_0^*(700)$	0^+	824	478
$K^{*}(892)$	1-	895.5	47.3
$K_0^*(1430)$	0^{+}	1375	190

Largest contributions

A.Dzyuba @ QNP-2022

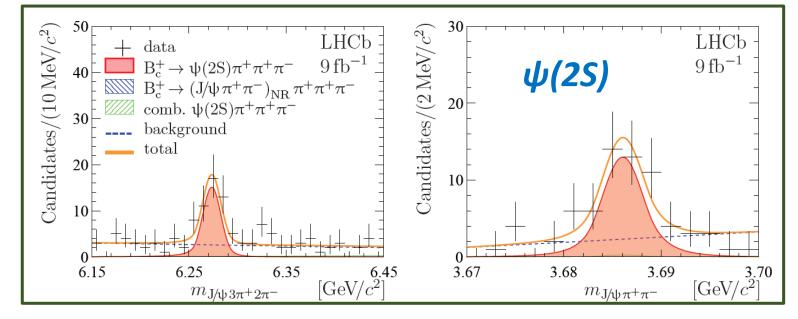
arXiv:2208.03262


II) *b*-physics with charmonia

- Muons are easy to identify online, therefore they provides a fruitful trigger options widely used in LHCb
- Decay of **B** mesons into charmonum states + light hadrons are used:
 - As a tool for CPV studies in *b*-sector.
 - As calibration channels for searches of new physics
- But they can also provide:
 - Playground to test different QCD approaches
 - An excellent opportunity for studies of charmonium and charmonium-like exotic states
 - Tool to measure various properties of **B** mesons

B_c⁺ decays into *charmonia* + *hadrons*

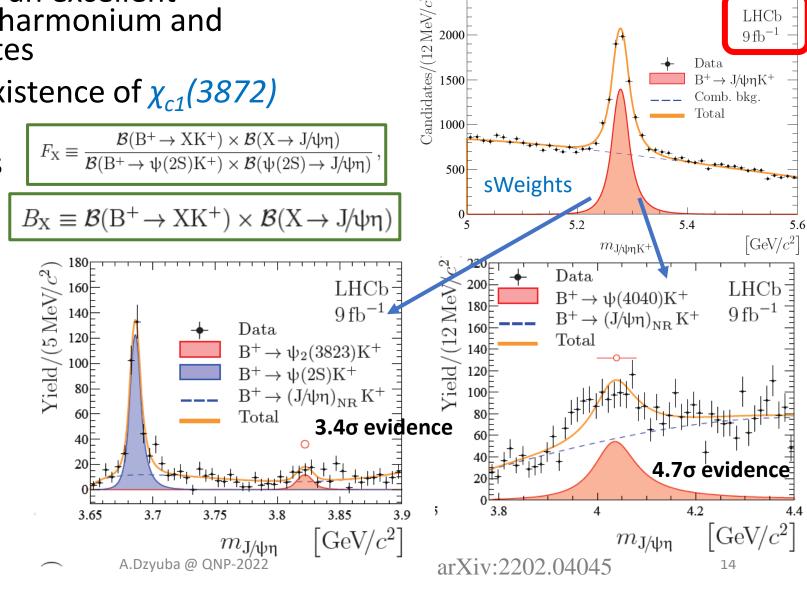
- Large number of light hadrons and large energy release
- Test a possibility to apply statistical, or quasi-classical, approaches to describe the multibody system of the light hadrons


$$\begin{aligned} \mathcal{R}_{J/\psi\,3\pi^{+}2\pi^{-}}^{J/\psi\,K^{+}K^{-}\pi^{+}\pi^{+}\pi^{-}} &\equiv & \frac{\mathcal{B}(\mathrm{B}_{\mathrm{c}}^{+}\to J/\psi\,\mathrm{K}^{+}\mathrm{K}^{-}\pi^{+}\pi^{+}\pi^{-})}{\mathcal{B}(\mathrm{B}_{\mathrm{c}}^{+}\to J/\psi\,3\pi^{+}2\pi^{-})} \,, \\ \mathcal{R}_{J/\psi\,3\pi^{+}2\pi^{-}}^{J/\psi\,4\pi^{+}3\pi^{-}} &\equiv & \frac{\mathcal{B}(\mathrm{B}_{\mathrm{c}}^{+}\to J/\psi\,4\pi^{+}3\pi^{-})}{\mathcal{B}(\mathrm{B}_{\mathrm{c}}^{+}\to J/\psi\,3\pi^{+}2\pi^{-})} \,, \\ \mathcal{R}_{J/\psi\,3\pi^{+}2\pi^{-}}^{\psi(2\mathrm{S})\pi^{+}\pi^{+}\pi^{-}} &\equiv & \frac{\mathcal{B}(\mathrm{B}_{\mathrm{c}}^{+}\to\psi(2\mathrm{S})\pi^{+}\pi^{+}\pi^{-}) \times \mathcal{B}(\psi(2\mathrm{S})\to J/\psi\,\pi^{+}\pi^{-})}{\mathcal{B}(\mathrm{B}_{\mathrm{c}}^{+}\to J/\psi\,3\pi^{+}2\pi^{-})} \end{aligned}$$

- Run-I and II datasets
- Three decay channels

B_c^+ into charmonia + hadrons

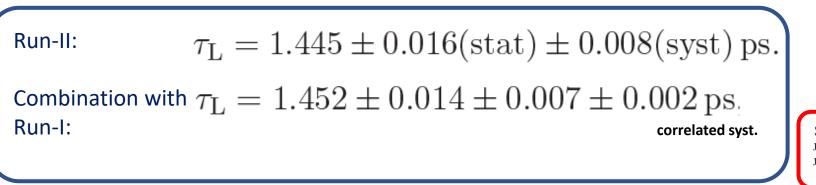
- For $J/\psi 3\pi^+ 2\pi^-$ channel a contribution from $\psi(2s)$ is observed
- Distributions of events in the $\psi(2S)$ region \rightarrow

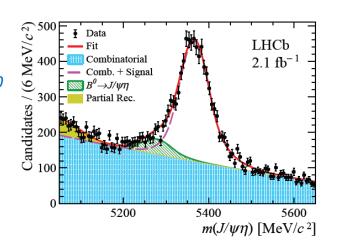

- Ratios of branching fractions are reported
- The mass spectra for the light-hadron system, as well as the mass spectra for the intermediate combinations of light hadrons agree with the phenomenological model based on QCD factorization approach

$$\mathcal{R}^{J/\psi K^+ K^- \pi^+ \pi^+ \pi^-}_{J/\psi 3\pi^+ 2\pi^-} = (33.7 \pm 5.7 \pm 1.6) \times 10^{-2}$$
$$\mathcal{R}^{J/\psi 4\pi^+ 3\pi^-}_{J/\psi 3\pi^+ 2\pi^-} = (28.5 \pm 8.7 \pm 2.0) \times 10^{-2}$$
$$\mathcal{R}^{\psi(2S)\pi^+ \pi^+ \pi^-}_{J/\psi 3\pi^+ 2\pi^-} = (17.6 \pm 3.6 \pm 0.8) \times 10^{-2}$$

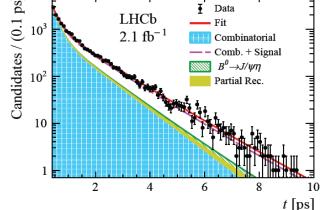
Intermediate charmonia contributions in $B^+ \rightarrow J/\psi \eta K^+$

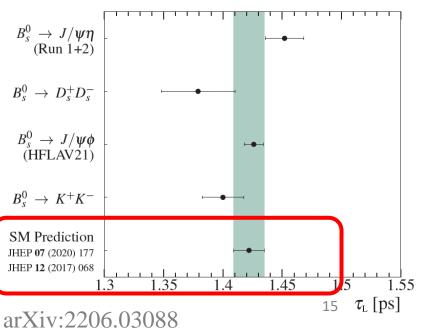
- Exclusive *B*-decays provides an excellent opportunity for studies of charmonium and charmonium-like exotic states
- Same ratios for other states


• $J/\psi \rightarrow \mu^+\mu^-$, $\eta \rightarrow \gamma\gamma$



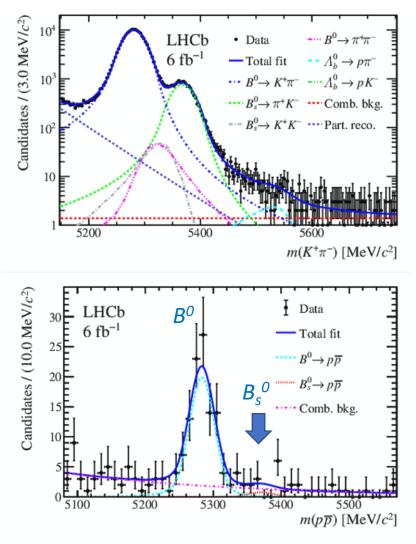
	Upper limit at 90% CL		
	$F_{\rm X}$ [10 ⁻²]	$B_{\rm X}~[10^{-7}]$	
$\psi(3770)$	2.2	4.6	
$\psi_3(3842)$	2.9	6.1	
$\psi(4160)$	4.2	8.7	
$\psi(4415)$	4.6	9.6	
R(3760)	2.0	4.1	
R(3790)	3.2	6.7	
$Z_{c}(3900)^{0}$	2.1	4.3	
$\psi(4230)$	1.9	3.9	
$\psi(4360)$	6.0	12.4	
$\psi(4390)$	11.6	24.1	
$Z_{c}(4430)^{0}$	6.1	12.7	
X' _C	1.9	3.9	


Measurement of τ_L using the $B_s^0 \rightarrow J/\psi \eta$


- Neutral mesons can be considered in deafferent basses: flavor, mass and CP eigenstates
- Sizable difference is predicted between decay widths of heavy (H) and light (L) eigenstates of B_s⁰
- Small CPV in mixing → mass eigenstates are also CP eigenstates
- Use CP even modes to determine $\tau_L = 1/\Gamma_L$
- Update for $B_s^0 \rightarrow J/\psi \eta$ with full Run-II data (6 fb⁻¹)
- Reconstruction: $J/\psi \rightarrow \mu^+\mu^-$, $\eta \rightarrow \gamma\gamma$
- 2D maximum likelihood fit of mass and time spectra

Example of fit (2018 dataset)

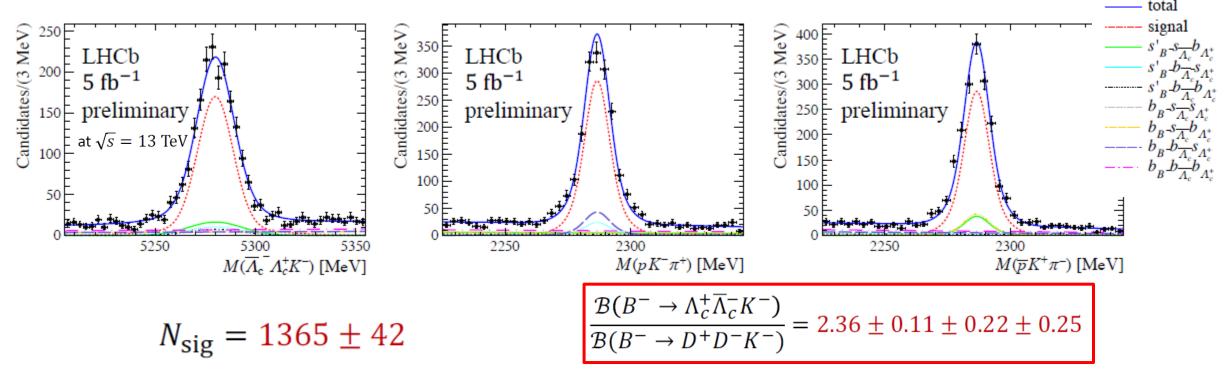
A.Dzyuba @ QNP-2022


III) Search for the rare hadronic decay $B_{s}^{0} \rightarrow \overline{pp}$

- Study role of exchange and annihilation diagrams in baryonic B decays
- Run-2 sample of 6 fb⁻¹ at 13 TeV
- Analysis relays on excellent LHCb PID capabilities
- $K\pi$ as a normalization mode
- No B_s^0 signal observed \rightarrow upper limit on the branching fraction

$$\mathcal{B}(B_s^0 \to p\overline{p}) < 4.4 \ (5.1) \times 10^{-9} \text{ at } 90\% \ (95\%) \text{ CL}.$$

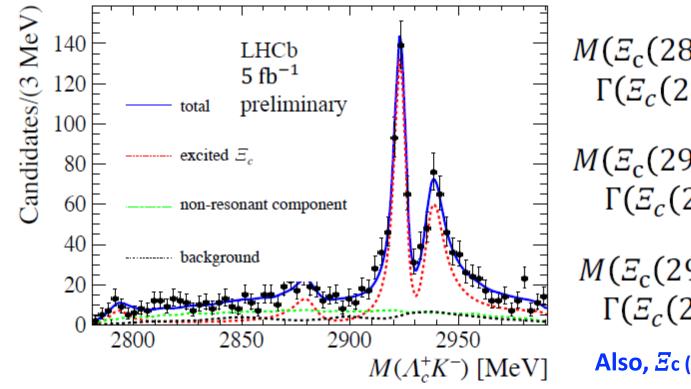
- *B*⁰ decay mode observation is confirmed with very large significance.
- The combination with Run-I


$$\mathcal{B}(B^0 \to p\overline{p}) = (1.27 \pm 0.13 \pm 0.05 \pm 0.03) \times 10^{-8}$$

16

Study of $B^+ \rightarrow \Lambda_c^+ \Lambda_c^- K^-$

- Low background channel to search for *exotics*, as well as for *excited* Ξ_c *states*
- Run-II data, 5 fb⁻¹ at 13 TeV
- Signal is extracted with a 3D-fit of mass spectra



Study of $B^+ \rightarrow \Lambda_c^+ \Lambda_c^- K^-$

 $\geq \mathcal{E}_{c}(2790)^{0}, \mathcal{E}_{c}(2880)^{0}, \mathcal{E}_{c}(2923)^{0}, \mathcal{E}_{c}(2939)^{0}$ included in the nominal fit

 $\checkmark J^P = 1/2^-$ (known), $1/2^-$, $3/2^-$, $3/2^-$ (1P $J^P_{[qq]} = 1^+$ multiplets; alternatives

studied in systematics); interference considered

3.8σ ⇒ evidence of a new state $M(\mathcal{Z}_{c}(2880)^{0}) = 2881.8 \pm 3.1 \pm 8.5 \text{ MeV}$ $\Gamma(\mathcal{Z}_{c}(2880)^{0}) = 12.4 \pm 5.3 \pm 5.8 \text{ MeV}$ $M(\mathcal{Z}_{c}(2923)^{0}) = 2924.5 \pm 0.4 \pm 1.1 \text{ MeV}$ $\Gamma(\mathcal{Z}_{c}(2923)^{0}) = 4.8 \pm 0.9 \pm 1.5 \text{ MeV}$ Confirm prompt observation $M(\mathcal{Z}_{c}(2939)^{0}) = 2938.5 \pm 0.9 \pm 2.3 \text{ MeV}$ $\Gamma(\mathcal{Z}_{c}(2939)^{0}) = 11.0 \pm 1.9 \pm 7.5 \text{ MeV}$

Also, Ξ_c (2790)⁰: 3.7 σ \Rightarrow evidence of new decay mode

Summary

- LHCb is the ultimate factory for spectroscopy of conventional mesons
 - Huge statistics / perfect vertexing and PID
- Many new analyses released in 2022:
 - Amplitude analyses
 - Decays to charmonia and light hadrons
 - Baryonic *b*-decays
 - Study of baryons, which contain two heavy quarks
- LHCb results on other topics can be found via
 - <u>https://lhcbproject.web.cern.ch/Publications/LHCbProjectPublic/Summary_all.html</u>
- Looking forward for Run-III data
- Thank you for your attention!