Discovering a new flow phenomena of flow angle and flow magnitude fluctuations and its impact on QGP studies

The 9th International Conference on Quarks and Nuclear Physics

Emil Gorm Nielsen, Niels Bohr Institute

September 7th emil.gorm.nielsen@cern.ch

Anisotropic flow

- QGP created in heavy-ion collisions can be probed via anisotropic flow
- Initial spatial anisotropy is transferred via large pressure gradients to final state momentum anisotropy

Comparing data with theoretical models allow for extraction of QGP properties

Emil Gorm Nielsen (NBI) | Sep 7th

QNP2022

Flow vector fluctuations

Flow vector may fluctuate with transverse momentum, $p_{\rm T}$

Hydro model predicted additional flow angle and flow magnitude fluctuations

based on **2-particle correlations**

with A Multi-Phase Transport model (AMPT)

Flow vector fluctuations

Standard 2-particle correlation

$$v_n\{2\} = \frac{\langle v_n(p_T) \ v_n \cos n[\Psi_n(p_T) - \Psi_n] \rangle}{\sqrt{\langle v_n^2 \rangle}}$$

$$v_n[2] = \sqrt{\langle v_n^2(p_T^a) \rangle}$$

Ratio of the two \rightarrow sensitive to the $p_{\rm T}$ -dependent flow vector fluctuations

$$\frac{v_n\{2\}}{v_n[2]} = \frac{\langle v_n(p_T^a) \ v_n \cos n[\Psi_n(p_T^a) - \Psi_n] \rangle}{\sqrt{\langle v_n^2(p_T^a) \rangle} \sqrt{\langle v_n^2 \rangle}} \longrightarrow \text{Flow mag}$$

 $v_2\{2\}/v_2[2] < 1 \rightarrow$ Flow vector fluctuations

Emil Gorm Nielsen (NBI) | Sep 7th

- $v_n\{2\}$ measures particle of interest against reference flow
- $v_n[2]$ takes two particles from same p_T bin

 - w angle fluctuations
 - gnitude fluctuations

How to disentangle the two effects?

Factorisation ratio

Factorisation of two-particle correlation into two single-particle distributions

$$V_{n\Delta}(p_{\mathrm{T}}^{a}, p_{\mathrm{T}}^{t}) \stackrel{?}{=} v_{n}(p_{\mathrm{T}}^{a}) \times v_{n}(p_{\mathrm{T}}^{t})$$

Test above relation with factorisation ratio

$$r_{n} = \frac{\langle v_{n}(p_{\rm T}^{a})v_{n}(p_{\rm T}^{t})\cos n[\Psi_{n}(p_{\rm T}^{a}) - \Psi_{n}(p_{\rm T}^{t})]}{\sqrt{\langle v_{n}^{2}(p_{\rm T}^{a})\rangle}\sqrt{\langle v_{n}^{2}(p_{\rm T}^{t})\rangle}}$$

 $r_2 < 1 \rightarrow$ Factorisation is broken

Factorisation broken in hydrodynamics due to fluctuations in the initial state

F. G. Gardim et al., PRC 87 (2013) 3,031901

Experimental measurements

Measurements by ALICE indicate the presence of $p_{\rm T}$ -dependent flow vector fluctuations

Well described by hydro calculations

Emil Gorm Nielsen (NBI) | Sep 7th

Preliminary ALICE measurements, presented in IS2021

Preliminary model calculations Statistical errors are expected to decrease

• Deviations from unity of $v_2\{2\}/v_2[2]$ in central collisions $\rightarrow p_T$ -dependent V_2 flow vector fluctuations

• Deviations are largest at the edge of hydro $p_{\rm T}$ range

• High precision Run 2 measurements allow for improved constraints on future model comparisons

Emil Gorm Nielsen (NBI)

IS2021 - Fluctuations and correlations of flow

A Multi-Phase Transport model (AMPT)

1. Initial conditions are generated with HIJING Lund string parameters, a and b, related to string tension κ

$$\kappa \propto \frac{1}{b(2+a)}$$

- 2. Convert hadrons produced from string fragmentation into valence quarks and anti-quarks
- 3. Parton-parton interaction are treated with Zhang's Parton Cascade Cross section obtained from pQCD screening masses

$$\sigma_{gg} = \frac{9\pi\alpha_s^2}{2\mu^2}$$

- 4. Quark coalescence model convert partons into hadrons
- 5. Hadronic rescattering is handled by A Relativistic Transport (ART) model

A Multi-Phase Transport model (AMPT)

Test observables sensitive to $p_{\rm T}$ -dependent flow fluctuations with different configurations of the AMPT model

Probe effect of transport properties by changing the cross section (Par1 vs Par4, Par2 vs Par5)

$$\sigma \uparrow \eta/s$$

Probe effect of hadronic rescattering by turning ART off (Par1 vs Par2, Par4 vs Par5)

Probe effect of initial conditions by changing Lund string parameters a and b (Par2 vs Par3)

	Cross section	a	b	AR'
Par1	1.5mb	0.3	0.15	ON
Par2	1.5mb	0.3	0.15	OF
Par3	1.5mb	0.5	0.9	OF
Par4	3mb	0.3	0.15	ON
Par5	3mb	0.3	0.15	OF

$v_2\{2\}/v_2[2]$

Deviation from unity in AMPT $\rightarrow p_{\rm T}$ -dependent flow vector fluctuations

Small (max. 10%) difference due to cross section *Larger shear viscosity dampen initial state fluctuations*

ART ON decreases the deviation from unity (max. 20%) *Smaller anisotropic flow increases relative contribution from initial state*

Large effect from changing initial state parameters (~ 40%) *Flow vector fluctuations originating in fluctuating initial conditions*

ALICE data slightly overestimated

QNP2022

Flow angle and magnitude fluctuations

Observable to measure flow angle fluctuations:

$$A_n^f = \frac{\langle \langle \cos[n(\varphi_1^a + \varphi_2^a - \varphi_3 - \varphi_4)] \rangle \rangle}{\langle \langle \cos[n(\varphi_1^a + \varphi_2 - \varphi_3^a - \varphi_4)] \rangle \rangle}$$
$$= \frac{\langle v_n^2(p_T^a) \ v_n^2 \cos 2n[\Psi_n(p_T^a) - \Psi_n] \rangle}{\langle v_n^2(p_T^a) v_n^2 \rangle}$$
$$\approx \langle \cos 2n[\Psi_n(p_T^a) - \Psi_n] \rangle$$

$$A_n^f < 1$$
 indicates p_T -dependent flow angle fluctuations

Emil Gorm Nielsen (NBI) | Sep 7th

Observable to measure flow magnitude fluctuations

$$\frac{\langle\langle\cos n(\varphi_1^a + \varphi_2 - \varphi_3^a - \varphi_4)\rangle\rangle\rangle}{\langle\langle\cos n(\varphi_2 - \varphi_4)\rangle\rangle} = \frac{\langle v_n^2(p_1^a - \varphi_1^a)\rangle}{\langle v_n^2(p_1^a)\rangle\rangle}$$

Normalise with $p_{\rm T}$ -integrated baseline:

$$M_n^f = \frac{\langle v_n^2(p_T^a) \ v_n^2 \rangle / \langle v_n^2(p_T^a) \rangle \langle v_n^2 \rangle}{\langle v_n^4 \rangle / \langle v_n^2 \rangle^2}$$

 $M_n^f < 1$ indicates p_T -dependent flow magnitude fluctuations

New ALICE measurements

Recent measurements by ALICE \rightarrow Observation of flow angle and flow magnitude fluctuations

Largest deviation in central collisions Dominated by event-by-event fluctuations

Phenomena present in transport model? What is the origin of the flow angle and flow magnitude fluctuations

Flow angle fluctuations

Isolate the fluctuations of Ψ_2 with A_2^{f} observable

No effect from varying the cross section Any effect is expected to show at high $p_{\rm T}$ - large uncertainty

Turning ART off increases flow angle fluctuations (max. 20%)

Very sensitive to initial conditions (~60%) Event-by-event fluctuations in initial state

AMPT overestimates the flow angle fluctuations

Flow magnitude fluctuations

Isolate the fluctuations of v_2 with M^{J}_{γ}

No effect from varying the cross section Dependence on transport properties cancelled by ratio

Only small effect (~10%) from turning ART off in highest $p_{\rm T}$ bin

Largest effect from changes in initial conditions Highly sensitive to the initial conditions

ALICE data is well described by AMPT

Summary

The $p_{\rm T}$ -dependent flow vector, flow angle and flow magnitude fluctuations present in transport model

Not unique feature of hydrodynamic models

the initial state

The AMPT model can reasonably reproduce the observed fluctuations in data AMPT mostly overestimates the fluctuations

Emil Gorm Nielsen (NBI) | Sep 7th

The observables show most sensitivity to changes to the initial conditions The $p_{\rm T}$ -dependent flow fluctuations are primarily driven by event-by-event fluctuations in

QNP2022