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Uncertainty 
Quantification
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• Machine learning is a field focused on 
understanding and building methods that 
'learn' a set of tasks

• Wide range of techniques
• Selection depends on the available data



Motivation
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Provide world-class data science solutions to advance research 

Why This Talk?
－Interested in the variety of applications of machine learning in experimental physics
－ML to augment or replace current processes that are temporally or computationally expensive
－ML used to address previously unaddressed or inadequately addressed problems



Hall-B: CLAS12 Tracking
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From Gagik Gavalian

combinations of 
clusters form   
track candidates

Track candidates then 
processed further by 
time-based tracking

CEBAF Large Acceptance Spectrometer (CLAS12) located in Hall-B

CLAS12 Drift Chamber:
• 6 drift chambers 

• each composed of 3 chambers 
(one from each region: R1, R2, R3)
(beam enters from the smallest region)

• Each sector has 2 superlayers of wires



Hall-B: CLAS12 Tracking
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From Gagik Gavalian

Motivation: Tracking is computationally intensive 
(takes a really long time)

Traditional

● Relies on fitting tracks with Kalman-Filter
● Time-to-complete not guaranteed.

● All clusters evaluated with all other clusters to form 
track candidates

● Many later determined not be a valid track
● though time was spent on fitting them

● Even after fitting, some tracks are not traced to the 
target, and must be discarded.

ML for particle track identification

● Reduction in track candidates to fit can lead to speed up 
of the fitting code (in theory)

● Time to inference guaranteed
● CLAS12 Tracking: Identify clusters from individual hits in 

Drift Chambers, construct track candidates using 5 or 6 
layer combinations

● Considerations:
● Inefficiencies and dead channels in drift chambers 

can lead to lost tracks
● Traditional tracking algorithm considers 5 segment

combinations and recovers tracks
● If track candidate detection is replaced with AI, a 

method must be developed to address the missing 
layer issue.



Hall-B: CLAS12 Tracking
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From Gagik Gavalian

ML Technique
Combined Neural Networks

● Multi-layer perceptron (MLP) classifier – to identify best track 
candidates composed of 6 segments

● MLP Auto-encoder to fix corruption/inefficiencies by 
predicting the position of missing segments

https://doi.org/10.1016/j.cpc.2022.108360
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From Gagik GavalianHall-B: CLAS12 Tracking

Results:

• Reconstruction software can process in parallel 
conventional and ML-assisted tracking

• Improved track finding efficiency by 12% - 15%
• Tracking code speedup ~35%
• Physics impact:

• Two particle final state reaction gain ~20%
• Three particle final state missing mass 

shows 35% increase in statistics of the 
missing proton

CLAS Collaboration meeting slides

Brown is traditional White is ML
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From Gagik GavalianHall-B: CLAS12 Tracking

Can We Make This Even Better? Especially at higher luminosity?
• Autoencoder was trained to clean raw data samples and leave only hit belonging to a track.
• As luminosity increases, noise in the raw data increases == combinatorics cause problems for traditional algorithms.

CLAS Collaboration meeting slides



Uncertainty Quantification (UQ)
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Prediction: It will rain in Newport News, Virginia in 2022.
P(rain | where=Newport News, when=2022) = 100%, 99.999….% confidence

JUST BRING AN UMBRELLA

AI/ML for Experimental Physics

craiyon.com generated images for “bring umbrella due to uncertain rain outside my 
office”

It will rain on my parking spot in at 17:15 in 8 days
P(rain | where=parking spot, when= 17:15 in 8 days):

= 37% chance in the PM, 
so…..maybe 30% at 15:17, maybe 60% confidence

Wunderground says 37% 
chance of evening rain.



When might we be concerned with uncertainty quantification?
• Provides valuable information (about the model, about the data)
• High risk
• Significantly different actions taken based on the prediction and the 

uncertainty
• Uncertainty quantification identified as an important topic at the 

recent series of DOE workshops for Advanced Research Directions in AI 
for Science and Security (https://www.anl.gov/cels/advanced-research-directions-on-ai-for-
science-and-security)
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Uncertainty Quantification (UQ) in ML for Experimental Physics

AI/ML for Experimental Physics

• It is critical to quantify the uncertainties in safety, 
optimization, and control applications

• Classification: Output label along with confidence

• Regression: Output mean along with variance

label + confidence mean + variance



Hall-D: GlueX Central Drift Chamber (CDC) Calibration and Control
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GlueX detector located in Hall-D

The CDC measures drift time 
and deposited charge and is 
used for particle identification

● Requires two calibrations: chamber gain
and drift time-to-distance

○ Gain Correction Factor (GCF): gain 
calibrations have the most variation 
+/- 15%

● Has one control: operating voltage



Conventional

● Control: CDC operating voltage fixed at 2125 V

● Calibrate: calibration values iteratively, produced 
after the experiment
○ ~2 hour runs
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Motivation: Conventional vs. Online, ML Calibration Paradigms

Hall-D: GlueX Central Drift Chamber (CDC) Calibration and Control

Online and ML

● Control: Stabilize detector response to changing 
environmental/experimental conditions by adjusting CDC 
HV

● Calibrate: online calibration values produced during the 
experiment

ML



Gaussian Process (GP)
● 3 features: 

● atmospheric pressure within the hall
● temperature within CDC
● CDC high voltage board current -> a measure of intensity 

of the electron beam current within the CDC
● 1 target: the traditional Gain Correction Factor (GCF)
● GP calculates PDF over admissible functions that fit the data
● GP provides the standard deviation

● we can exploit for uncertainty quantification (UQ)
● We used a basic GP kernel: 

● Radial Basis Function + White Noise
● Tested isotropic and anisotropic kernels
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Hall-D: GlueX Central Drift Chamber (CDC) Calibration and Control

Do not set the CDC HV to a value 
for which we are uncertain

ML Technique



Hall-D: GlueX Central Drift Chamber (CDC) Calibration and Control

• We do not want to adjust high voltage to 
an "uncertain" value

• Gaussian Process provides uncertainty 
quantification

• Only apply a new calibration if the 
uncertainty is within the 3% of ideal gain 
correction factor otherwise, we extract to 
the “nearest” prediction within tolerance

• This method implemented in the Charged 
Pion Polarizability (CPP) experiment
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Considering UQ for control decisions 

AI/ML for Experimental Physics

Few low current training runs Added low current training runs

With low current training 
runs, displaying the interior 
of certainty “surface”
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Hall-D: GlueX Central Drift Chamber (CDC) Calibration and Control

Verification Results: 
Cosmic Rays
(no beam)

Conventional ML controlled

AI/ML for Experimental Physics

% 𝐝𝐢𝐟𝐟𝐞𝐫𝐞𝐧𝐜𝐞 𝐆𝐂𝐅𝐭𝐫𝐚𝐝𝐢𝐭𝐢𝐨𝐧𝐚𝐥 𝐚𝐧𝐝 𝐆𝐂𝐅𝐌𝐋

Preliminary Results: 
Charged Pion Polarizability (CPP)
(beam on)
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Different methods for UQ in DL

• Unfortunately, majority UQ methods for DL do not account for 

out-of-distribution (OOD) uncertainty 

• This is cri cal in op miza on or control problems 

• For example, different methods yield vastly different uncertainty 
es ma on 

• Determinis c  - standard neural network for classification

• MC Dropout 

• Deep Ensemble 

Class Probability (Normalized) Predictive 
Uncertainty

Deterministic Model Deterministic Model

MC Dropout MC Dropout

Deep Ensemble Deep Ensemble

AI/ML for Experimental Physics
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Gaussian Process (GP) for UQ in DL

AI/ML for Experimental Physics

Class Probability
Gaussian Process

(Normalized) Predictive 
Uncertainty
Gaussian Process

Gaussian Process 
• GP transforms the input space into a higher 

dimensional space with the help of a kernel

• The inferences are based on the distance measured 
between different input samples

• This allows GP to intrinsically provide uncertainty 
estimates including OOD

• Recent work from Google Research  presented a 
way to introduce Gaussian Process approximation 
within a neural network: 
https://arxiv.org/pdf/2006.10108.pdf

• This allows highly expressive deep networks and 
provides uncertainty estimation

Spectral Neural Gaussian Process
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ORNL: Spallation Neutron Source Accelerator Anomaly Detection

• Predict errant beam pulses as well as 
equipment degradation 

• Continuous data collection is done by 
Differential Current Monitor (DCM), 
Beam Position Monitor (BPM), etc.

• Goal: Errant beam prediction on one 
pulse before it happens

AI/ML for Experimental Physics

Spallation Neutron Source located at Oak Ridge National Lab



Traditional

● Traditional DL classification models fails to 
identify unseen anomalies (OOD)
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Traditional classification models vs Siamese model

ORNL: Spallation Neutron Source Accelerator Anomaly Detection

Siamese model

● Similarity based models can correctly classify unseen 
anomalies,  e.g. a Siamese model

● Siamese model does not explicitly model the classification 
but focuses on the similarities

● learns twin embedding models to transform inputs 
into a latent space

● Distance measures are applied at latent space to 
compute the similarity 
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Uncertainty aware Siamese model

ORNL: Spallation Neutron Source Accelerator Anomaly Detection

• We enhanced a Siamese model of normal and errant 
beam pulses by adding GP layer providing an 
uncertainty estimate

• Results from the similarity model showed an ~4x 
improvement in performance over previously 
published results 

• The ROC curves shows nearly the same level of 
performance (not optimized)

• We introduced an out-of-domain anomaly, labelled 
1111 (red), the UQ-based model correctly identified 
the anomaly and indicated high uncertainty (as 
expected)



Fermilab: Reinforcement Learning for Booster Control Policy

Problem definition
• Reduce beam losses in the FNAL Booster 

－ Machine Learning (ML) model to provide an optimal set of 
actions for accelerator controls

• The beam is accelerated with the help of booster cavities and 
combined-function bending and focusing electromagnets 
known as gradient magnets powered by the gradient magnet 
power supply (GMPS) – regulated by the GMPS regulator

FNAL Accelerator Complex: 
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High-current, high-power 
electrical loads near GMPS 
vary in time, causing 
unwanted fluctuations

Fermilab Site

Booster ring

Courtesy: Christian Herwig

• Use of RL to improve the existing PID-based regulator

• Policy model is focused on controlling the regulator to 
reduce the error 

AI/ML for Experimental Physics



Fermilab: Reinforcement Learning for Booster Control Policy

Uncertainty quantification for surrogate models in risk-averse control research

• Quantile regression (DQR) method has great performance in the training distribution and is 
calibrated by definition, however, they do not perform well for out-of-distribution (OOD) estimation

• Bayesian Neural Net (BNN) models do a better job to estimate OOD but require calibration

• GP approximation (DGPA) model provides the best OOD estimation and is calibrated by design

22AI/ML for Experimental Physics
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