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Machine Learning

Machine learning is a field focused on
understanding and building methods that
'learn' a set of tasks

Wide range of techniques
Selection depends on the available data
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Motivation

Provide world-class data science solutions to advance research

Why This Talk?
- Interested in the variety of applications of machine learning in experimental physics
- ML to augment or replace current processes that are temporally or computationally expensive
- ML used to address previously unaddressed or inadequately addressed problems
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Hall-B: CLAS12 Tracking From Gagik Gavalian

CEBAF Large Acceptance Spectrometer (CLAS12) located in Hall-B

CLAS12 Drift Chamber:
_mwseot ¢ 6 drift chambers

« each composed of 3 chambers

__— R3 chamber
j (one from each region: R1, R2, R3)

" R2 chamber (beam enters from the smallest region)

I’ - RI chamber

« Each sector has 2 superlayers of wires

combinations of
clusters form

Track candidates then
processed further by

track candidates time-based tracking
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Hall-B: CLAS12 Tracking

From Gagik Gavalian

Motivation: Tracking is computationally intensive
(takes a really long time)

Traditional

Relies on fitting tracks with Kalman-Filter
e Time-to-complete not guaranteed.

All clusters evaluated with all other clusters to form
track candidates

Many later determined not be a valid track
e though time was spent on fitting them

Even after fitting, some tracks are not traced to the

ML for particle track identification
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Reduction in track candidates to fit can lead to speed up
of the fitting code (in theory)

e Time to inference guaranteed
CLAS12 Tracking: Identify clusters from individual hits in
Drift Chambers, construct track candidates using 5 or 6
layer combinations

e Considerations:
e Inefficiencies and dead channels in drift chambers
can lead to lost tracks
e Traditional tracking algorithm considers 5 segment
combinations and recovers tracks
e If track candidate detection is replaced with Al, a
method must be developed to address the missing

layer issue. _
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Hall-B: CLAS12 Tracking From Gagik Gavalian

ML Technique https://doi.org/10.1016/j.cpc.2022.108360
Combined Neural Networks Classifier
e Multi-layer perceptron (MLP) classifier — to identify best track Output Layer
candidates composed of 6 segments
e MLP Auto-encoder to fix corruption/inefficiencies by a .
predicting the position of missing segments a . v

Auto-Encoder
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Hall-B: CLAS12 Tracking

Results:
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CLAS Collaboration meeting slides
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From Gagik Gavalian

* Reconstruction software can process in parallel
conventional and ML-assisted tracking

~
DC Hit Based
DC ML Track Finder Tracking
CLUSTERING

Reconstruction
Services for
All Detector
Components

Al Assisted
Particles

Conventional
Particles )

. ——————,
Conventional DC Hit Based r‘
Track Finder Tracking

* Improved track finding efficiency by 12% - 15%
* Tracking code speedup ~35%
* Physics impact:
* Two particle final state reaction gain ~20%
* Three particle final state missing mass
shows 35% increase in statistics of the
missing proton
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Hall-B: CLAS12 Tracking

Can We Make This Even Better? Especially at higher luminosity?

* Autoencoder was trained to clean raw data samples and leave only hit belonging to a track.
* Asluminosity increases, noise in the raw data increases == combinatorics cause problems for traditional algorithms.

RAW DATA GROUND TRUTH De-NOISED
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Luminosity scan for MC SIDIS data sample:

1000
800 a) —e— conventional 45 nA
45 nA conventional 45 nA
g [] de-noised ai 45 nA

700 b)

From Gagik Gavalian
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Uncertainty Quantification (UQ)

Prediction: It will rain in Newport News, Virginia in 2022.
P(rain | where=Newport News, when=2022) = 100%, 99.999....% confidence
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so.....maybe 30% at 15:17, maybe 60% confidence

2 TG N T

JUST BRING AN UMBRELLA

R

I Cloud Cover (%) W Chance of Precip. (%) @ Chance of Snow (%) m Humidity (%) - Pressu

Wunderground says 37%
chance of evening rain.

craiyon.com generated images for “bring umbrella due to uncertain rain outside my
office”
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Uncertainty Quantification (UQ) in ML for Experimental Physic

When might we be concerned with uncertainty quantification?
Provides valuable information (about the model, about the data)

High risk

Significantly different actions taken based on the prediction and the

uncertainty

Uncertainty quantification identified as an important topic at the
recent series of DOE workshops for Advanced Research Directions in Al
for Science and Security (https://www.anl.gov/cels/advanced-research-directions-on-ai-for-

science-and-security)

It is critical to quantify the uncertainties in safety,
optimization, and control applications

Classification: Output label along with confidence

Regression: Output mean along with variance

Al/ML for Experimental Physics
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label + confidence
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Hall-D: GlueX Central Drift Chamber (CDC) Calibration and Control

GlueX detector located in Hall-D

forward calorimeter
barrel time-of
DIRC
G LUEY v . ot tmee
counter

target

The CDC measures drift time

photon beam
\

vater forward drif and deposited charge and is
/) \ o used for particle identification
\ tagger magnet hran superconducting

electron beam magnet

beam tagger to detector distance
is not to scale b

Ve 70

.- TN /e
P al

® Requires two calibrations: chamber gain
and drift time-to-distance
O Gain Correction Factor (GCF): gain
calibrations have the most variation
+/- 15%
e Has one control: operating voltage

-6° Stereo Layers

N | +6° Stereo Layers
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Hall-D: GlueX Central Drift Chamber (CDC) Calibration and Control

Motivation: Conventional vs. Online, ML Calibration Paradigms

Conventional

e Control: CDC operating voltage fixed at 2125V

o Calibrate: calibration values iteratively, produced
after the experiment
o ~2 hour runs

ITERATION CYCLE

Al/ML for Experimental Physics

Online and ML

e Control: Stabilize detector response to changing
environmental/experimental conditions by adjusting CDC
HV

e Calibrate: online calibration values produced during the
experiment

Atmospheric pressure

CDC HV
= X CDC gain

ML " et

- == CCDB values

Rl

Jefferson Lab
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Hall-D: GlueX Central Drift Chamber (CDC) Calibration and Control

ML Technique AN R
Gaussian Process (GP) \'\ \
e 3 features: X/
e atmospheric pressure within the hall
e temperature within CDC X

e CDC high voltage board current -> a measure of intensity
of the electron beam current within the CDC
e 1 target: the traditional Gain Correction Factor (GCF)
e GP calculates PDF over admissible functions that fit the data
e GP provides the standard deviation
e we can exploit for uncertainty quantification (UQ) G Pﬂ @W
e We used a basic GP kernel:

e Radial Basis Function + White Noise
e Tested isotropic and anisotropic kernels

Do not set the CDC HV to a value
for which we are uncertain

E_D\')
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Hall-D: GlueX Central Drift Chamber (CDC) Calibration and Control

Considering UQ for control decisions

« We do not want to adjust high voltage to
an "uncertain” value

» Gaussian Process provides uncertainty
quantification

* Only apply a new calibration if the
uncertainty is within the 3% of ideal gain
correction factor otherwise, we extract to
the “nearest” prediction within tolerance

* This method implemented in the Charged
Pion Polarizability (CPP) experiment

Al/ML for Experimental Physics

Few low current training runs Added low current training runs

10
TEMP - ‘ * CURRENT
- '
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® CURRENT

PRESSURE ~ § & &

With low current training .. .
runs, displaying the interior =<5
of certainty “surface”

4 CURRENT
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Hall-D: GlueX Central Drift Chamber (CDC) Calibration and Control

Verification Results:
Cosmic Rays
(no beam)

Preliminary Results:
Charged Pion Polarizability (CPP)
(beam on)

Al/ML for Experimental Physics
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Different methods for UQ in DL

Class Probability (Normalized) Predictive
Uncertainty
* Unfortunately, majority UQ methods for DL do not account for Deterministic Model Deterministic Model

out-of-distribution (OOD) uncertainty

* This is critical in optimization or control problems

* For example, different methods yield vastly different uncertainty
estimation

* Deterministic - standard neural network for classification

fers

Al/ML for Experimental Physics 16 Jj_e,f_f-' son Lab



Gaussian Process (GP) for UQ in DL

: , _ Gaussian Process
e GP transforms the input space into a higher Normalized) Prodictive

dimensional space with the help of a kernel Class Probability Uncertainty

Gaussian Process Gaussian Process

The inferences are based on the distance measured
between different input samples

This allows GP to intrinsically provide uncertainty
estimates including OOD

Recent work from Google Research presented a

Hidden Layer Dense Layer

X e —_— h(x) S —_—

h: X—>H :H—Y y
way to introduce Gaussian Process approximation ’
within a neural network: Y U
. Spectral Normalized Ussian Procoss
https://arxiv.org/pdf/2006.10108.pdf « e Hddenlaer - g - SUSLPLES
* This allows highly expressive deep networks and Spectral Neural Gaussian Process

provides uncertainty estimation
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ORNL.: Spallation Neutron Source Accelerator Anomaly Detection

Spallation Neutron Source located at Oak Ridge National Lab

* Predict errant beam pulses as well as
equipment degradation

* Continuous data collection is done by
Differential Current Monitor (DCM),
Beam Position Monitor (BPM), etc.

* Goal: Errant beam prediction on one
pulse before it happens

Al/ML for Experimental Physics
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ORNL.: Spallation Neutron Source Accelerator Anomaly Detection

Traditional classification models vs Siamese model

Traditional Siamese model

e Traditional DL classification models fails to

identify unseen anomalies (OOD) o Similarity based models can correctly classify unseen

anomalies, e.g. a Siamese model
e Siamese model does not explicitly model the classification
but focuses on the similarities
¢ learns twin embedding models to transform inputs
into a latent space
o Distance measures are applied at latent space to

0a compute the similarity
Image #1
Encodings
0.2 ~
nage ¥l h{imagel)
¥.@—.
0.0 \

Shared weights euclidean_distance(hl, h2) —— sigmoid — 0.98
image #2 M / similarity
E—‘@

h{image2)

3 =
-
2N
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ORNL.: Spallation Neutron Source Accelerator Anomaly Detection

3 H g v I Dataset with Anomaly (1111) AUC:0.7201
Uncertainty aware Siamese model
» We enhanced a Siamese model of normal and errant = 5
beam pulses by adding GP layer providing an fos U '
uncertainty estimate fee N i v P e
s o e £ |
* Results from the similarity model showed an ~4x e M EE o b B erveiss .
improvement in performance over previously 0.06 e Normal
published results “' b

* The ROC curves shows nearly the same level of S0

performance (not optimized)

-

0.04 g

2
R ML

* We introduced an out-of-domain anomaly, labelled
1111 (red), the UQ-based model correctly identified

0.03

Classifier output Uncertainty

the anomaly and indicated high uncertainty (as %
expected) 5.0%
0.0 0.2 04 0.6 0.8 1.0
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Fermilab: Reinforcement Learning for Booster Control Policy

PrObIem deflnltlon Bending Observed 81/ I for min and

Magnet
Current

: w03 h
* Reduce beam losses in the FNAL Booster et =10 e

- Machine Learning (ML) model to provide an optimal set of High_cu rrent, high—power
actions for accelerator controls electrical loads near GMPS
* The beam is accelerated with the help of booster cavities and vary in time, causing

combined-function bending and focusing electromagnets
known as gradient magnets powered by the gradient magnet
power supply (GMPS) - regulated by the GMPS regulator

unwanted fluctuations

FNAL Accelerator Complex: « Use of RL to improve the existing PID-based regulator

* Policy model is focused on controlling the regulator to

MiniBoone  NuMI
(8 GeV) (120 GeV)

com—
> A0
TeV extraction
Recycler Alline collider aborts

p (8Gev) S B0
CDF detector

—~

reduce the error

Historical Digital Reinforcement ;’;""g
= Twin il (baseline)

Transfer Learning

Main Injector
(150 Gev)

p abort

Tevatron
(1TeV)

I g:‘:: Rerzlforcgmem Ca;.:i;f:ytod
Courtesy: Christian Herwig GPU g Model
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Fermilab: Reinforcement Learning for Booster Control Policy

Uncertainty quantification for surrogate models in risk-averse control research

* Quantile regression (DQR) method has great performance in the training distribution and is
calibrated by definition, however, they do not perform well for out-of-distribution (OOD) estimation

« Bayesian Neural Net (BNN) models do a better job to estimate OOD but require calibration
* GP approximation (DGPA) model provides the best OOD estimation and is calibrated by design
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et 2 s 1.0{ ----- IMINER prediction (BNN)
04 0 p O EFRET === Model Prediction: DGPA | | _____ IMINER predict.ion (DQR)
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0.50 0.4
0.25 — Data 0.2
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0.00 0%8
0.75 ~=- Model Uncertainty: DGPA
1l i 020l =7 Model Uncertainty: BNN
0.50 v ) -~ Model Uncertainty: DQR
—— Data
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-~ Model Prediction: DQR
,,,,,,, i i
: ‘ s 0.10 : ! i s
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i i I /
Model Uncertainty: BNN i It 1 A woali i, 2 i /
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