Upsilon-Underlying Event Correlations in pp Collisions at ATLAS

Zvi Citron for ATLAS QNP2022

Big Picture: Why are we looking at **Y**-UE correlations

- Soft sector observables that were once (uniquely) associated with a QGP have been measured in pp collisions
 - Most prominently "flow" which persists to low multiplicity pp & even photo-nuclear interactions
 - Strangeness enhancement
- It's more difficult to tell this story with hard sector observables
- Here we look at Upsilon meson correlations with inclusive charged particles to try to bridge the soft-hard gap

ALI-PREL-321075

<u>Eur. Phys. J. C 77 (2017) 428</u>

2

A Previous Hard-Soft Study: Two-particle correlations in Z Boson Tagged pp Collisions

- In a previous study we asked: Does the presence of a hard scattering in the collision change "something-likegeometry" and consequently the observed "flow"?
- To answer we studied v₂ via 2particle correlations in pp collisions 'tagged' by a Z boson
- The answer to above question is not really

אוניברסיטת בן-גוריון בנגב

جامعة بن غوريون في النقب Ben-Gurion University of the Negev

A Previous Hard-Soft Study: Two-particle correlations in Z Boson Tagged pp Collisions

- Developed techniques for HI-style analysis in high-luminosity pp collisions
 - We learned how to look at all tracks in the event even with high pile-up conditions
 - Starting thinking about where else this could be used ... **Upsilon mesons**!

Eur. Phys. J. C 80, 64 (2020)

What Do We Know about Upsilon Production at the LHC?

- Production cross-section seems well measured in pp collisions
- Some questions remain regarding polarization, importance of $\boldsymbol{\chi}_{\rm h}$ feeddown etc

Υ(1S)

What Do We Know about Upsilon Production and collectivity at the LHC?

 From a heavy-ion perspective Y(nS) states could be a thermometer for a QGP

[Color screening]

[Regeneration]

6

What Do We Know about Upsilon Production and collectivity at the LHC?

- From a heavy-ion perspective Y(nS) states could be a thermometer for a QGP
- We can measure the nuclear modification factor in heavy-ion collisions to compare AA to pp production

7

Ben-Gurion University of the Negev

/i Citron; QNP 5 September 2022

What Do We Know about Upsilon Production and collectivity at the LHC?

- From a heavy-ion perspective Y(nS) states could be a thermometer for a QGP
- We can measure the nuclear modification factor in heavy-ion collisions to compare AA to pp production
 - pA could give us some sense of the influence of "cold nuclear effects"

Ben-Gurion University of the Negev

CMS Measurement of Y(nS) and pp Multiplicity

 CMS results all the way back in 2014 challenge this picture by showing a decrease in excited Y states compared to the ground state vs pp multiplicity

CMS Measurement of Y(nS) and pp Multiplicity

- CMS results all the way back in 2014 challenge this picture by showing a decrease in excited Y states compared to the ground state vs pp multiplicity
- More detailed measurements in 2020

CMS Measurement of Y(nS) and pp Multiplicity

 $S_T = 1 \rightarrow \text{not jet-like}$

- CMS results all the way back in 2014 challenge this pictures by (1s) showing a decrease in $\exp(\frac{N^{AR}}{track} = 0$ Y states compared to the group d state vs pp multiplicity Y(3s) / Y(1s)
- More detailed measurem entices = 0in 2020 in = 1
 - Including analysis of event $N_{\text{track}}^{\Delta R} > 2$ geometry via spherocity $K_{\text{track}}^{\Delta R} > 1.2$ suggests effect is connected with UE net jets 60, $\frac{80}{M_{\text{track}}} = 0$ $\frac{100}{7}$ jet-like¹⁴⁰

 $S_{xy}^{T} = \frac{1}{\sum_{i} p_{\mathrm{T}i}} \sum_{i} \frac{1}{p_{\mathrm{T}i}} \begin{pmatrix} p_{xi}^{2} & p_{xi}p_{yi} \\ p_{xi}p_{yi} & p_{yi}^{2} \end{pmatrix}$

אוניברסיטת בן-גוריון בנגב

جامعه بن غوريون في النقب Ben-Gurion University of the Negev

- Measure the total multiplicity in the event (and particle kinematics) for each Upsilon state
- Precise control of background and pile-up
- Use differential particle kinematics to reach for the UE
- Compare excited to ground states

ATLAS-CONF-2022-023

- Measure the total multiplicity in the event (and particle kinematics) for each Upsilon state
- Precise control of background and pile-up
- Use differential particle kinematics to reach for the UE
- Compare excited to ground states

ATLAS-CONF-2022-023

- Measure the total multiplicity in the event (and particle kinematics) for each Upsilon state
- Precise control of background and pile-up
- Use differential particle kinematics to reach for the UE
- Compare excited to ground states

- Measure the total multiplicity in the event (and particle kinematics) for each Upsilon state
- Precise control of background and pile-up
- Use differential particle kinematics to reach for the UE
- Compare excited to ground states

- Measure the total multiplicity in the event (and particle kinematics) for each Upsilon state
- Precise control of background and pile-up
- Use differential particle kinematics to reach for the UE
- Compare excited to ground states

- Measure the total multiplicity in the event (and particle kinematics) for each Upsilon state
- Precise control of background and pile-up
- Use differential particle kinematics to reach for the UE
- Compare excited to ground states

- Measure the total multiplicity in the event (and particle kinematics) for each Upsilon state
- Precise control of background and pile-up
- Use differential particle kinematics to reach for the UE
- Compare excited to ground states

- Measure the total multiplicity in the event (and particle kinematics) for each Upsilon state
- Precise control of background and pile-up
- Use differential particle kinematics to reach for the UE
- Compare excited to ground states

- Measure the total multiplicity in the event (and particle kinematics) for each Upsilon state
- Precise control of background and pile-up
- Use differential particle kinematics to reach for the UE
- Compare excited to ground states

- Measure the total multiplicity in the event (and particle kinematics) for each Upsilon state
- Precise control of background and pile-up
- Use differential particle kinematics to reach for the UE
- Compare excited to ground states

Zvi Citron; QNP 5 September 2022

Ben-Gurion University of the Negev

- Measure the total multiplicity in the event (and particle kinematics) for each Upsilon state
- Precise control of background and pile-up
- Use differential particle kinematics to reach for the UE
- Compare excited to ground states

vi Citron; QNP 5 September 2022

- Measure the total multiplicity in the event (and particle kinematics) for each Upsilon state
- Precise control of background and pile-up
- Use differential particle kinematics to reach for the UE
- Compare excited to ground states

 Shift in UE multiplicity across different excitation states can be understood as suppression of excited states at higher multiplicity

Is there Y(nS) Suppression in pp Collisions?

- As event multiplicity (should be UE) grows larger, excited Y states are, compared to the ground state, relatively less likely to be found
- Do the CMS and ATLAS results show some "QGP-like" quarkonium "melting"?
- Is it even a suppression? Maybe it's a lower state enhancement?
 →In any case seems to be a hard UE correlated phenomenon

Co-mover Interaction Model (CIM)

EPJC 81, 669 (2021)

- Within CIM, quarkonia are broken by collisions with comovers i.e. final state particles with similar rapidities.
- CIM is typically used to explain *p*+A and A+A systems, matches CMS Upsilon pp data.
- With the new data, CIM can be tested on pp to reproduce $\Upsilon(nS) \Upsilon(1S)$ differences
 - in cross section
 - in *n*_{ch}
 - in hadron kinematic distributions: p_{T} , $\Delta \phi \Delta \eta$

אוניברסיטת בן-גוריון בנגב

حامعة بن غوريون في النقب

Ben-Gurion University of the Negev

Quarkonia Ratios Expected From m_{T} Scaling

arXiv:2203.11831

- Transverse mass scaling lets one define an expectation for the excited states relative to the ground states
- Works well ~universally for light mesons at LHC energies
- Looking at Upsilon meson cross-sections shows missing excited states at low p_T for Y(2S) factor of 1.6 are missing for Y(3S) factor of 2.4!

Ben-Gurion University of the Negev

Summary

- Strong evidence from Upsilon mesons that there is some non-trivial interaction between the "UE" and a hard scattering
- ATLAS & CMS have independent approaches that both point to UE driven modification of relative abundance of ground state vs excited state Upsilon mesons
 - Modification appearst to be a suppression of excited states
- Seems we don't understand Upsilon hadronization as it depends on the UE
- More investigations can be made in the data
 - Check rapidity dependence
 - Check other species etc
- Effect is large and significant
 - Can existing models see this effect?
 - New ideas?

