New discoveries of the exotic states at LHCb

MISHA MIKHASENKO ON BEHALF OF LHCB

ORIGINS Excellence Cluster

September 6nd, 2022 QNP2022

Two ways of building complexity

2/17

Two ways of building complexity

Example: innerworking of T_{cc}^+

Molecular configuration:

- two mesons are well separated,
- bound by forces similarly to el.mag. van der Waals,
- entirely coupled to $D^{*+}D^0$,
- lifetime is limited by D^{*+} ,
- ? spatially-extended object.

Compact configuration:

- genuine QCD state,
- compact (cc) core,
- there is no limit on lifetime, depends on how much it couples to continuum,
- ? typical hadronic size of 1 fm.

Summary of Pentaquarks studies

(*) will be discussed today

$$X_b
ightarrow (J/\psi p) \dots$$

$$egin{aligned} &\Lambda^0_b o (J/\psi p) \mathcal{K}^- \ (*) \ &\Lambda^0_b o (J/\psi p) \pi^- \ &B^0_s o (J/\psi p) ar p \ \end{aligned}$$
 Thresholds: $\Sigma^{(*)+}_c \overline{D}^{(*)0} \ / \ \Sigma^{(*)++}_c D^{(*)-} \end{aligned}$

 P_{ab}^{i}

$$X_b
ightarrow (J/\psi \Lambda) \dots$$

$$egin{array}{lll} arpi_b^- o (J/\psi\Lambda) K^- \ (*) \ B^- o (J/\psi\Lambda) ar p \ (*) \end{array}$$

Thresholds:
$$\equiv_c^{(*)0}\overline{D}^{(*)0} / \equiv_c^{(*)+} D^{(*)-}$$

 $P_{\psi s^{i}}^{\Lambda}$

LHCb proposal for the new name convention of exotic hadrons [arXiv:2206.15233]

The first pentaquarks

[PRL 115 (2015), 072001; PRL 122 (2019) 22, 222001]

Misha Mikhasenko (ORIGINS Cluster)

The first pentaquarks

Misha Mikhasenko (ORIGINS Cluster)

 $\Xi_b^- \to \underbrace{J/\psi\Lambda}_{} K^-$ 1/15

Hint for the strange partners

 $\Xi_b^- \rightarrow J/\psi(\rightarrow \mu^+\mu^-)\Lambda(\rightarrow p\pi^-)K^-$ data sample [Sci.Bull. 66 (2021) 1278-1287]

- Full data sample 1750 signals with purity 80%.
- $\bullet\,$ The decay is dominated by the Ξ resonances
- $P_{\psi s}^{\Lambda}(4459)$: $m = 4458.8 \pm 2.9^{+4.7}_{-1.1}$ MeV, $\Gamma = 17.3 \pm 6.5^{+8.0}_{-5.7}$ MeV with 4.3σ significance

Hint for the strange partners

 $\Xi_b^- \rightarrow J/\psi(\rightarrow \mu^+\mu^-)\Lambda(\rightarrow p\pi^-)K^-$ data sample [Sci.Bull. 66 (2021) 1278-1287]

- Full data sample 1750 signals with purity 80%.
- The decay is dominated by the Ξ resonances
- $P_{\psi s}^{\Lambda}(4459)$: $m = 4458.8 \pm 2.9^{+4.7}_{-1.1}$ MeV, $\Gamma = 17.3 \pm 6.5^{+8.0}_{-5.7}$ MeV with 4.3σ significance

 $B^-
ightarrow J/\psi (
ightarrow \mu^+ \mu^-) \Lambda (
ightarrow
ho \pi) ar{
ho}$

[LHCb-PAPER-2022-031 (in preparation)]

• Amplitudes:

- NR($J/\psi p$), 84.0 ± 2.2%
- NR($\Lambda \overline{p}$), 11.3 \pm 1.3%
- New $P^{\Lambda}_{\psi s}$, 12.5 \pm 0.7%,
- with parameters
 - * $m(P_{\psi s}^{\Lambda}) = 4338.2 \pm 0.7 \text{ MeV}$ * $\Gamma(P_{\psi s}^{\Lambda}) = 7.0 \pm 1.2 \text{ MeV}$
- $J^P = 1/2^-$ is preferred
- BW mass is close to $\Xi_c \overline{D}$ thresholds:
 - 0.8 MeV above $\Xi_c^+ D^-$
 - 2.9 MeV above $\Xi_c^0 \overline{D}^0$

Tetraquarks candidates

(*) will be discussed today

$B^+ \rightarrow D^+ \underbrace{D^- K^+}_{T_{cs}}$

- Horisontal bands are resonances in D^+D^-
- Hint for a vertical band around 8.5 GeV² in $m^2(D^-K^+)$
- Exotic candidate $T_{cs}(2900)$: $[\bar{c}\bar{s}ud]$
- Both quantum numbers $J^P=0^+$ and 1^- are required in the fit

- Horisontal bands are resonances in D^+D^-
- Hint for a vertical band around 8.5 GeV² in $m^2(D^-K^+)$
- Exotic candidate $T_{cs}(2900)$: $[\bar{c}\bar{s}ud]$
- Both quantum numbers $J^P=0^+$ and 1^- are required in the fit

Threshold enhancement at $D_s^+ D_s^-$ in $B^+ \rightarrow D_s^+ D_s^- K^+$ decays [LHCb-PAPER-2022-018, 019 (in preparation)]

•
$$D_s^+ o K^+ K^- \pi^+$$

• 360 signal candidates

 $B^+ \rightarrow D_s^+ D_s^- K^+$ amplitude analysis

Main features of the data:

- Enhancement at the $D_s^+ D_s^-$ threshold
- Followed by a dip at 4.15 GeV.

[LHCb-PAPER-2022-018, 019 (in preparation)]

Baseline model: $D_s^+ D_s^-$ resonances

- 1 $^{--}$: ψ (4260) \sim 4 %, ψ (4660) \sim 2 %
- 0⁺⁺: X(3960) \sim 24%, X(4140) \sim 18%, NR \sim 50%

Alternative model using *K*-matrix [LHCb-PAPER-2022-018, 019 (in preparation)]

Three interfering components in 0^{++} are replaced by the K-matrix.

- Coupled channels $D_s^+ D_s^-/J/\psi \phi$
- One K-matrix pole + bgd term Gives equally good fit

- Assuming to be the same, $\mathcal{B}(\chi_{c0} \to D^+D^-)/\mathcal{B}(\chi_{c0} \to D_s^+D_s^-P) \sim 0.3$ large molecular component, or large tetraquark component, $T_{\psi\phi}$
- [JHEP 06 (2021) 035] finds a state coupled to $D_s^+ D_s^-$ on the lattice

- Belle sees a clean state in $J/\psi\omega$ with $J^P = 0^+$
- The $D_s^+ D_s^-$ signal might be a tail of the $\chi_{c0}(3915)$ state

 $T_{c\bar{s}}^{a}(2900)$ in the $D_{s}^{\pm}\pi^{+}$ system [LHCb-PAPER-2022-026 (in preparation)]

- 4420 B⁰ decays and 3940 B⁻ decays, including charge-conjugated reactions
- Simultaneous fit using the isospin symmetry
- Main components in B^0/B^+ model:
 - $\blacktriangleright~D^*\sim 17/14\,\%$
 - ▶ $D_2^* \sim 22/23\%$
 - $D\pi S$ -wave~ 45/48 %.
- $T_{cs}^a \sim 2\%$ needed (> 5 σ), $J^P = 0^+$ is favored (7.5 σ)
- Mass and width are close to these of $T_{cs}^a(2900)$

•
$$T_{c\bar{s}}^{a0}$$
: $m = 2892 \pm 14 \pm 15 \text{ MeV}$,
 $\Gamma = 119 \pm 26 \pm 12 \text{ MeV}$;
• $T_{c\bar{s}}^{a++}$: $m = 2921 \pm 17 \pm 19 \text{ MeV}$
 $\Gamma = 137 \pm 32 \pm 14 \text{ MeV}$

15/17

 $T_{c\bar{s}}^{a}(2900)$ in the $D_{s}^{\pm}\pi^{+}$ system [LHCb-PAPER-2022-026 (in preparation)]

- 4420 B⁰ decays and 3940 B⁻ decays, including charge-conjugated reactions
- Simultaneous fit using the isospin symmetry
- Main components in B^0/B^+ model:
 - $\blacktriangleright~D^*\sim 17/14~\%$
 - ► $D_2^* \sim 22/23\%$
 - $D\pi S$ -wave~ 45/48 %.
- $T_{cs}^a \sim 2\%$ needed (> 5 σ), $J^P = 0^+$ is favored (7.5 σ)
- Mass and width are close to these of $T_{cs}^{a}(2900)$

•
$$T_{c\bar{s}}^{a0}$$
: $m = 2892 \pm 14 \pm 15 \text{ MeV}$,
 $\Gamma = 119 \pm 26 \pm 12 \text{ MeV}$;
• $T_{c\bar{s}}^{a++}$: $m = 2921 \pm 17 \pm 19 \text{ MeV}$,
 $\Gamma = 137 \pm 32 \pm 14 \text{ MeV}$

Summary and conclusion

- With excellent performance of LHCb, we are exploring the uncharted waters
- This summer, more puzzle pieces for the quest of understanding nature complexity

Hints for the bigger picture:

• new $P_{\psi s}^{\Lambda}$ in B decays are close to $\Xi_c D$ threshold $\longleftrightarrow P_{\psi}^{N}$ are connected to $\Sigma_c \bar{D}^{(*)}$ Note, not the SU(3) flavour symmetry(!). Check $\Lambda_c \bar{D}^{(*)}$ and $\Xi'_c \bar{D}^{(*)}$ thresholds

new T^a_{cs} appear to be similar to T_{cs} HQSS is in action? Where is the good/bad diquark mass difference?

• new $\chi_{c0}/T_{\psi\phi}$ close to the $D_s^+D_s^-$ threshold. A hadronic molecule or the scalar charmonium?

Updated timeline for LHC

[W. Altmannshofer, F. Archilli, arXiv:2206.11331]

LHCb:

- ramping up after major Upgrade I
- $\times 5$ statistics in Run 3(2023-2025) @13.6 TeV + Run 4(2029-2032) @14 TeV

Misha Mikhasenko (ORIGINS Cluster)

New exotic states from LHC

Thank you for your attention

CMS confirms $T_{\psi\psi}$ structures

[CMS-PAS-BPH-21-003]

[LHCb, Sci.Bull. 65 (2020) 23, 1983-1993]

- Clear dips is present that makes the incoherent fit struggles
- Third state is significant

CMS confirms $T_{\psi\psi}$ structures

[CMS-PAS-BPH-21-003]

[LHCb, Sci.Bull. 65 (2020) 23, 1983-1993]

- Clear dips is present that makes the incoherent fit struggles
- Third state is significant

ATLAS also finds structures in $J/\psi J/\psi$

Misha Mikhasenko (ORIGINS Cluster)

ATLAS also finds structures in $J/\psi J/\psi$ and $\psi' J/\psi$

- Hints for the near-threshold structure
- Resonances in ψ'J/ψ might produce structures in J/ψJ/ψ as partial-reconstructed decays, ψ' → J/ψ + neutrals

Four-body decay angles

[MM, L. An, R. McNulty, arXiv:2007.05501]

- heta is the polar angle of $(J/\psi)_1$ with respect to the polarization direction
- $(heta_1,\phi_1)$ are the spherical angles of μ^+ in the $(J/\psi)_1$ helicity frame
- $(heta_2,\phi_2)$ are the spherical angles of μ^+ in the $(J/\psi)_2$ helicity frame

No polarization \Rightarrow no $z \Rightarrow$ no decay plane (pink) \Rightarrow only $\phi = \phi_1 + \phi_2$ matters.

$$H_{\lambda_1,\lambda_2} = \begin{pmatrix} h_{1,1} & h_{1,0} & h_{1,-1} \\ h_{0,1} & h_{0,0} & h_{0,-1} \\ h_{-1,1} & h_{-1,0} & h_{-1,-1} \end{pmatrix}$$

The same-color elements are connected by symmetries.

The symmetry relates the couplings $H_{\lambda_1,\lambda_2} = (-1)^J \eta_X H_{-\lambda_1,-\lambda_2}, \qquad \qquad H_{\lambda_1,\lambda_2} = (-1)^J H_{\lambda_2,\lambda_1}.$

Four categories of possible helicity matrices

[arXiv:2007.05501]

group	$\eta_X(-1)^J, (-1)^J$	J ^P	symmetry
1	+,+	0 ⁺ , 2 ⁺ , 4 ⁺ , 6 ⁺	symmetric, S
11	-,+	0 ⁻ , 2 ⁻ , 4 ⁻ , 6 ⁻	symmetric, <i>S</i>
	+, -	1-, 3-, 5-, 7-	antisymmetric, A
IV	_, _	1^+ , 3 ⁺ , 5 ⁺ , 7 ⁺	antisymmetric, A

a, b, c, d are still unknown coefficients, complex in general.

Misha Mikhasenko (ORIGINS Cluster)

New exotic states from LHCI

September 6nd, 2022

Four categories of possible helicity matrices

[arXiv:2007.05501]

group	$\eta_X(-1)^J, (-1)^J$	JP	symmetry
1	+,+	0 ⁺ , 2 ⁺ , 4 ⁺ , 6 ⁺	symmetric, S
11	-,+	0 ⁻ , 2 ⁻ , 4 ⁻ , 6 ⁻	symmetric, <i>S</i>
	+, -	1-, 3-, 5-, 7-	antisymmetric, A
IV	_, _	1^+ , 3 ⁺ , 5 ⁺ , 7 ⁺	antisymmetric, A

a, b, c, d are still unknown coefficients, complex in general.

Misha Mikhasenko (ORIGINS Cluster)

New exotic states from LHC

September 6nd, 2022

Rederivation of the Landau-Yang theorem

"A massive particle with spin 1 cannot decay into two photons", wikipedia

Photons do not carry the longitudinal polarizarion $\Rightarrow H_{0,i} = H_{i,0} = 0$

No decay to two photons for 1^+ , and group-*III*: 1^- , 3^- , 5^- , ...

Misha Mikhasenko (ORIGINS Cluster)

New exotic states from LHCb

September 6nd, 2022

[arXiv:2007.05501]

17 / 17

$D\bar{D}$ spectroscopy

Compare to inclusive *DD* spectra:

 $m_{D\bar{D}}$

 $\left[\text{GeV}/c^2\right]$

Dalitz Plot Decomposition (DPD)

