NEW PHYSICS SEARCHES AT KAON AND HYPERON FACTORIES

JURE ZUPAN U. OF CINCINNATI

based on community report 2201.07805 (editors: Goudzovski, Redigolo, Tobioka, JZ)

1

QNP2022, virtual@FSU, Tallahassee, FL, Sep 6 2022,

MAIN MESSAGES

- NA62, KOTO, KLEVER,... are not single purpose experiments
 - flagship decays: $K^+ \to \pi^+ \nu \bar{\nu}, K_L \to \pi^0 \nu \bar{\nu}$ \Rightarrow probe heavy NP
- can also search for light NP: $K \rightarrow \pi X_{NP}$
 - \Rightarrow probe even higher scales

THE CASE FOR LIGHT NEW PHYSICS SEARCHES

- explored only part of the NP parameter space
- light particles: a window to high UV dynamics

THE CASE FOR LIGHT NEW PHYSICS SEARCHES

- explored only part of the NP parameter space
- light particles: a window to high UV dynamics

THE CASE FOR LIGHT NEW PHYSICS SEARCHES

- explored only part of the NP parameter space
- light particles: a window to high UV dynamics

J. Zupan NP in kaon and hyperon...

3

QNP2022, Sep 6 2022

LIGHT NEW PARTICLES

- how generic are light new particles?
- any spontaneously broken global symmetry
 - ⇒ massless Nambu-Goldstone boson

4

J. Zupan NP in kaon and hyperon...

QNP2022, Sep 6 2022

PORTALS

Portal	Interactions
Dark Photon, A'_{μ}	$-\epsilon F'_{\mu\nu}B^{\mu\nu}$
Dark Higgs, S	$(\mu S + \lambda S^2) H^{\dagger} H$
Heavy Neutral Lepton, N	$y_N LHN$
Axion-like pseudo scalar, a	$aF ilde{F}/f_a, aG ilde{G}/f_a, \left(ar{\psi}\gamma^\mu\gamma_5\psi ight)\partial_\mu a/f_a$

J. Zupan NP in kaon and hyperon...

LIGHT NEW PHYSICS \Rightarrow PROBE OF HIGH SCALES

- rare decays into a light state, X, e.g., $K \rightarrow \pi X$,
 - exquisite probes of UV physics
- parametric gains compared to probing NP through dim-6 ops.

- SM decay width power suppressed: $\Gamma_K \propto m_K^5/m_W^4$
- if through dim 5 op. suppressed by $1/f_a$
 - $\Rightarrow Br(K \to \pi \varphi) \propto (m_W^2 / f_a m_K)^2$
 - similar for dim 4
- no such $1/m_K$ enhancement for dim. 6 couplings
 - $Br(K \to \pi e^- \mu^+) \propto (m_W/\Lambda)^4$

UPSHOT

• searching for $K \rightarrow \pi X$, with X light NP, expect to reach very high UV scales

J. Zupan NP in kaon and hyperon...

QNP2022, Sep 6 2022

EXAMPLE: FLAVOR VIOLATING QCD AXION

Martin Camalich, Pospelov, Vuong, Ziegler, JZ, 2002.04623

- QCD axion with FV couplings to quarks
 - solves the strong CP problem
 - can be a cold DM candidate
 - effectively massless in FV transitions
- general analysis, allowing for FV couplings as well

$$\mathcal{L}_{\text{eff}} = \frac{\alpha_s}{8\pi} \frac{a}{f_a} G\tilde{G} + \frac{E}{N} \frac{\alpha_{\text{em}}}{8\pi} \frac{a}{f_a} F\tilde{F} + \frac{\partial_\mu a}{2f_a} \bar{f}_i \gamma^\mu (C_{f_i f_j}^V + C_{f_i f_j}^A \gamma_5) f_j$$

8

THE STRONGEST FV CONSTRAINTS

Martin Camalich, Pospelov, Vuong, Ziegler, JZ, 2002.04623

J. Zupan NP in kaon and hyperon...

MANY MODES

many modes / possible NP searches 2201.07805
 possible at kaon&hyperon factories

MANY MODES

many modes / possible NP searches

2.1 Higgs 2.4 Dark 2.5 Leptonic 2.6 Strongly 2.7 GN 2.8 Two dark 2.9 Dark 2.3 Heavy 2.10 More 2.11 Heavy Decay \ Model 2.2 ALP Photon Violation sector particles portal Neutral Lepton Force (X)Int. Neutrino Baryons exotic New Physics 4.1 $K \rightarrow \pi + inv$ \checkmark \checkmark _ \checkmark \checkmark \checkmark \checkmark _ \checkmark _ 4.2 $K \rightarrow \pi\pi$ +inv CP viol. axial coupl. √ even massless _ _ _ _ _ possible in possible in 4.3 $K \rightarrow \pi \gamma + inv$ \checkmark even massless _ extensions extensions $\pi^0 \to \gamma A'$ 4.4 $K \rightarrow 2\pi\gamma$ +inv _ possible _ negligible lifetime 4.5 $K \rightarrow \pi \gamma \gamma$ √ prompt loophole $(\checkmark dilaton)$ lifetime 4.6 $K \to \pi \ell_{\alpha} \ell_{\alpha}$ √ prompt √ prompt \checkmark loophole axial coupl. 4.7 $K \to \pi \pi \ell_{\alpha} \ell_{\alpha}$ CP viol. \checkmark & prompt A'. $4.8 \ K \to \pi \ell_{\alpha} \ell_{\alpha} \ell_{\beta} \ell_{\beta}$ MeV axion, also $K \to \pi 2 \ell_{\alpha} 2 \ell_{\beta} \text{inv}$ 4.9 $K_L \rightarrow \gamma + \text{inv}$ 1 _ 4.10 $K \rightarrow \pi \gamma, 3\gamma$ Lorentz viol. _ _ _ 4.11 $K_L \rightarrow \gamma \gamma + \text{inv}$ \checkmark (Table 2) _ _ _ _ 4.12 $K_{S,L} \rightarrow \ell^+ \ell^- + \text{inv}$ possible possible $K_S \rightarrow \mu \mu$ $4.12 \ K_{S,L} \rightarrow 2\ell 2\gamma$ possible possible $4.13 K^0 \rightarrow 4\ell$ possible possible 4.14 $K^+ \rightarrow \ell^+$ +inv \checkmark $\checkmark (X \rightarrow inv)$ \checkmark _ _ 4.15 $K^+ \rightarrow 3\ell$ +inv possible $\checkmark (X \to \ell \ell)$ U(1)+HNL _ $K^+ \to \pi^0 \ell^+ N$ possible 4.16 $K^+ \rightarrow \ell \gamma \gamma + inv$ possible possible _ $(m_N \lesssim 20 \,\mathrm{MeV})$ $(X \to 2\gamma)$ 4.17 LFV FV ALP. Z'FV ALP $\checkmark (K^+ \to \ell^+ N,$ 4.18 LNV √(Maj. HNL) _ $N \rightarrow \pi^- \ell^+$) $K_S \to A' \gamma$ $K_S \to \pi(\pi) 2\ell$, 4.19 Rare K_S decays $K_S \to 4\ell$ $K_S \rightarrow 2\gamma + \text{inv}$ $K_S \to \pi(\pi) 2\ell$ $K_S \rightarrow \mu \mu$ $\rightarrow \pi(\pi) 2\gamma$ $\rightarrow A' \gamma \pi$ 4.20 Dark Shower _ \checkmark _ _ Table 8 Table 1 Table 4 5 Hyperon $B_1 \rightarrow B_2 \varphi$ _ $B_1 \rightarrow B_2 a$ $B_1 \rightarrow B_2 A'$ $B \rightarrow \gamma/M$ +inv

J. Zupan NP in kaon and hyperon...

10

QNP2022, Sep 6 2022

2201.07805

EXAMPLES

- improved sensitivities expected at next generation of kaon exp.
- ⇒ a number of channels and/or models where this translates to a qualitative leap in phenomenology

HIGGS MIXED SCALAR

- for two to three orders of magnitude larger datasets
 - ⇒ could close the gap for Higgs-mixed scalar all the way to the BBN floor

PROMPT ALPS

- searches for prompt ALPs in $K \rightarrow \pi a$
 - either $a \rightarrow \gamma \gamma$ or $a \rightarrow e^+ e^-$
 - close the gap to constraints from beam dump searches
- \Rightarrow either discovery or only $K \rightarrow \pi a_{inv}$ signature remains

- close the gap to constraints from beam dump searches
- \Rightarrow either discovery or only $K \rightarrow \pi a_{inv}$ signature remains

- close the gap to constraints from beam dump searches
- \Rightarrow either discovery or only $K \rightarrow \pi a_{inv}$ signature remains

J. Zupan NP in kaon and hyperon...

HEAVY NEUTRINOS

- two orders improvement in $Br(K^+ \to \ell^+ N)$
 - start probing minimal see-saw neutrino mass models
 - for O(100 MeV) sterile neutrino masses

 start probing minimal see-saw neutrino mass models

for O(100 MeV) sterile neutrino masses

SELF INTERACTING ν 's

- order of magnitude improvement on $Br(K^+ \rightarrow \mu^+ \nu X_{inv})$
- probe fully self-interacting $\nu_{e,\mu}$ explanation of Hubble tension

K_L decays

- $K_L \to \pi^0 X_{\text{NP}}$ from $s \to dX_{\text{NP}}$ less sensitive than $K^+ \to \pi^+ X_{\text{NP}}$
- still, many K_L decays with leading sensitivity to NP
 - $K_L \rightarrow \pi^0 \nu \bar{\nu}$ theoretically the cleanest SM prediction
 - will provide higher sensitivity to heavy NP than $K^+ \rightarrow \pi^+ \nu \bar{\nu}$
 - *K_L* decays can probe Grossman-Nir violating models
 Hostert, Kaneta, Pospelov, 2005.07102
- Gori, Perez, Tobioka, 2005.05170
 subleading constr. from K⁺ decays Ziegler, Zupan, Zwicky, 2005.00451
 Egana-Ugrinovic, Homiller, Meade, 1911.10203; Kitahara, Okui, Perez, Soreq, Tobioka, 1909.1111; Liu, McGinnis, Wagner, Wang, 2001.06522; Liao, Wang, Yao, Zhang, 2005.00753
 J. Zupan NP in kaon and hyperon...

- still, many K_L decays with leading sensitivity to NP
 - $K_L \rightarrow \pi^0 \nu \bar{\nu}$ theoretically the cleanest SM prediction
 - will provide higher sensitivity to heavy NP than $K^+ \rightarrow \pi^+ \nu \bar{\nu}$
 - *K_L* decays can probe Grossman-Nir violating models
 Hostert, Kaneta, Pospelov, 2005.07102
- Gori, Perez, Tobioka, 2005.05170
 subleading constr. from K⁺ decays Ziegler, Zupan, Zwicky, 2005.00451
 Egana-Ugrinovic, Homiller, Meade, 1911.10203; Kitahara, Okui, Perez, Soreq, Tobioka, 1909.1111; Liu, McGinnis, Wagner, Wang, 2001.06522; Liao, Wang, Yao, Zhang, 2005.00753
 J. Zupan NP in kaon and hyperon...

HYPERONS

- exp. limits on rare hyperon decays are less stringent.
- but, hyperons probe different couplings than $K \rightarrow \pi$
 - e.g., $B_1 \rightarrow B_2 X_{inv}$ (vs. $K \rightarrow \pi X_{inv}$) probes
 - CP violating (vs. CP conserv.) coupl. of Higgs mixed scalar model ($X_{inv} = \varphi$)
 - axial (vs. vectorial) couplings for ALPs ($X_{inv} = a$)
 - can search for decays kinematically forbidden for kaons
 - example: $B \rightarrow \gamma B_{dark}$ or $B \rightarrow MB_{dark}$ in dark baryon models Geng et al, 2112.11979

J. Zupan NP in kaon and hyperon...

CONCLUSIONS

- rare kaon and hyperon decays: many interesting channels for light NP searches
- a clear set of targets for the next generation of experiments

BACKUP SLIDES

SUPERNOVA BOUNDS

- in neutron star Λ, n, p, e are in equilibrium
- Λ → na decays can cool the proto-neutron star
- Λ, *n* have the same Fermi energy
 ⇒ at T=0 Pauli blocking forbids
 Λ → na decays
- at finite temperature volume emission rate (in NR limit)

$$Q \simeq n_n (m_\Lambda - m_n) \Gamma(\Lambda \to na) \ e^{-\frac{m_\Lambda - m_n}{T}},$$

see also Camalich et al, 2012.11632

- assuming this is below neutrino emission rate 1sec after the collapse of SN1987A
 - bounds on $|F_{sd}^A|$ and $|F_{sd}^V|$ in the range $10^9 10^{10} \text{ GeV}$