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AI for Design

Guo, Kai, et al. Materials Horizons 8.4 (2021): 1153-1172.

B. Sanchez-Lengeling, A. Aspuru-Guzik. Science 361.6400 (2018): 360-365.

It is a relatively new but active area of research. 
Many applications in, e.g., industrial material, 
molecular and drug design. 

Z. Zhou et al., Scientific Reports, vol. 9, no. 1, pp. 1–10, 2019
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AI-assisted Detector Design

S. Shirobokov, V. Belavin, M. Kagan, A. Ustyuzhanin, and A.G. Baydin. Black-Box Optimization with Local Generative Surrogates, 2020. arXiv: 2002.04632. 

T. Dorigo. Geometry optimization of a muon-electron scattering detector. Physics Open, 4:100022, 2020. 

F. Ratnikov. Using machine learning to speed up and improve calorimeter R&D. Journal of Instrumentation, 15(05):C05032, 2020.

E. Cisbani, CF, et al. AI-optimized detector design for the future Electron Ion Collider: the dual-radiator RICH case. JINST 15(05):P05009, 2020. 

S. Meyer et al. Optimization and performance study of a proton CT system for pre-clinical small animal imaging. Phys. Med. Biol., 65(15):155008, 2020. 

CF, et al. (ECCE), AI-assisted Optimization of the ECCE Tracking System at the Electron Ion Collider arXiv:2205.09185, 2022

When it comes to designing detectors with AI this is a frontier topic with few examples in the literature. 

https://cfteach.github.io/nnpss/ — NNPSS, MIT 2022

https://indico.bnl.gov/event/16328/ — Meeting @AI WG Detector Design
In this talk I will use the future “EPIC” detector at EIC as an example https://wiki.bnl.gov/EPIC/ 

(starting from the experience of the detector proposal “ECCE” https://www.ecce-eic.org/)

● For years the full detector design has been studied after the subsystem prototypes are ready (taking into account the phase 
constraints from the full detector or outer layers). We need to use advanced simulations which are computationally expensive 
(Geant). 

● Modern complex design: many parameters (and multiple objective functions) — curse of dimensionality. AI-assisted 
strategies can help designing more efficiently (in terms of performance and resources needed).  

https://cfteach.github.io/nnpss/
https://indico.bnl.gov/event/16328/
https://wiki.bnl.gov/EPIC/
https://www.ecce-eic.org/
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Multi-Objective Optimization 

ÿ2

ÿ1

● The problem becomes challenging when the objectives are of conflict to each other, 
that is, the optimal solution of an objective function is different from that of the other. 

● In solving such problems, with or without constraints, they give rise to a trade-off 
optimal solutions, popularly known as Pareto-optimal solutions.  

● MO-based solutions are helping to reveal important hidden knowledge about a problem – a matter which is 
difficult to achieve otherwise 

● In this talk we use both evolutionary (1) and bayesian approaches (2). 
○ During the proposal phase we utilized (1), which relies on a population approach in its search procedure. 
○ After the proposal we implemented and started utilizing (2).

The ECCE Tracker Design Optimization considers simultaneously:

● momentum resolution 
● angular resolution
● Kalman filter efficiency
● (pointing resolution)  
● Mechanical constraints
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The Typical Workflow 

Detector 
Simulation 

Analysis of 
High-level 

reconstruction of 
events

Physics 
Events 

Design parameters

A.I.
gathers observations and 

suggests new points

customization

compute intensive (Geant4)

● AI can assist in designing more efficiently 
detectors (performance, costs). 

● It helps steering the design (and eventually 
fine-tune it). 

● It can capture hidden correlations among 
design parameters. 

See talk at IAEA 
Technical Meeting on AI

Forward simulations needed to simulate  quantum phenomena
 (interaction of particles with matter)

https://nucleus.iaea.org/sites/ai4atoms/SitePages/WG-AI4PHY.aspx
https://nucleus.iaea.org/sites/ai4atoms/SitePages/WG-AI4PHY.aspx
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Popular AI-Strategies (in a nutshell)

This is one of the most popular approach, characterized by:
● Use of an elitist principle
● Explicit diversity preserving mechanism
● Emphasis in non-dominated solutions

The crowding distance di of point 
i is a measure of the objective 

space around i which is not 
occupied by any other solution in 

the population. 

i

f1

f2

i+1

i-1
The population Rt is classified in non-dominated fronts. 

Not all fronts can be accommodated in the N slots of available in the new 
population Pt+1. We use crowding distance to keep those points in the last 

front that contribute to the highest diversity. 

Evolutionary  
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Popular AI-Strategies (in a nutshell)

● BO is a sequential strategy 
developed for global 
optimization.

● After gathering evaluations we 
builds a posterior distribution 
used to construct an acquisition 
function.
 

● This cheap function determines 
what is next query point.

1. Select a Sample by Optimizing the Acquisition Function.
2. Evaluate the Sample With the Objective Function.
3. Update the Data and, in turn, the Surrogate Function.
4. Go To 1.

        Extension to multiple objectives… 

Bayesian
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ECCE Tracker: Reference VS Projective 
Parametrization underlies the AI-assisted design and can explore non-projective as well as projective
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non-projective projective
(onĀoinĀ R&D)

CF, et al. (ECCE), AI-assisted Optimization of the ECCE Tracking System at the Electron Ion Collider arXiv:2205.09185, 2022 
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ECCE Tracker: Parametrization 
Parametrization of the support structure Parametrization of 

Disks, tracking layers, TTL

Geometric Constraints

Disks: rmax and rmin are calculated 
based on the support structure.

Sagitta: length fixed and radius 
changed based on the cone angle.

Parametrization underlies the AI-assisted design and can explore non-projective as well as projective

CF, et al. (ECCE), AI-assisted Optimization of the ECCE Tracking System at the Electron Ion Collider arXiv:2205.09185, 2022 
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“Soft”/“Strong” Constraints and Checks
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Integration during the EIC Detector Proposal

● We want to use these 
algorithms to: (1) steer the 
design and suggest 
parameters that a 
“manual”/brute-force 
optimization will likely miss to 
identify; (2) further optimize 
some particular detector 
technology (see d-RICH 
paper, e.g., optics properties)

● AI allows to capture hidden 
correlations among the 
design parameters.

● All “steps” (physics, detector) 
involved in the AI 
optimization, strong interplay 
between working groups  

AI-“Optimization” does not 
necessarily mean “fine-tuning”

Light/smart optimization pipelines ran during the “explorative” 
phase of the detector proposal

https://iopscience.iop.org/article/10.1088/1748-0221/15/05/P05009/meta
https://iopscience.iop.org/article/10.1088/1748-0221/15/05/P05009/meta
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Implementation Weighted sum with errors
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● Objectives evaluated in fine-grained phase-space 

● Propagate uncertainties from fits

(sum in bins of 14 bins of P) (Average objective in a η bin)
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AI-optimization Parallelization

Workflow during proposal and beyond

GEANT4-based simulations

new EPIC 
software-stack
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“Navigate” Pareto Front
Can take a snapshot any time 

during evaluation
1 2 Updated Pareto Front at time t

At each point in the Pareto front 
corresponds a design 3

Analysis of Objectives (momentum resolution, angular resolution, KF efficiency)4
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Evolution and Validation
● Black points:  first simulation campaign, a preliminary detector concept in phase-I 

optimization with no developed support structure;

● Blue:  fully developed simulations for final ECCE detector proposal; Red: the 
ongoing R&D for the optimization of the support structure. 

● There is an improvement in performance in all η bins with the exception of the 
transition region, an artifact of the fact that black do not include a realistic simulation 
of the material budget in the transition region! 

● In the transition region, it can be also appreciated the improvement provided by the 
projective design

1st simulation (black) 
not realistic!

Observables not directly used in the optimization as objectives

Performance evaluated after optimization process (both designs) using standard 
analysis procedures 

Notice red points are related to an ongoing project R&D with a projective support 
structure for the ECCE tracker.   

E.g., D0 invariant mass from 
semi-inclusive deep inelastic scattering
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Interactive Navigation of Pareto front

● Use cutting-edge data science tools for 
visualization of results from approximated 
Pareto front 

● Exploration in a multiple objective space

● Facilitate study/comparison of trade-off 
solutions

● Here MOBO is used using BoTorch/Ax 
(benefit from strong community support 
— Meta/Facebook) 

Credits: K. Suresh (U. of Regina) 

https://ai4eicdetopt.pythonanywhere.com

https://ai4eicdetopt.pythonanywhere.com
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Extension to larger system of sub-detectors

● Cherenkov detectors are essential part of the PID system of EPIC 

○ Simulating these detectors is typically compute expensive, involving many 
photons that need to be tracked through complex surfaces. 

○ All of them rely on pattern recognition of ring images in reconstruction, and 
the DIRC is the one having the more complex ring patterns! 

● Extension of design optimization to tracker + PID system

○ Potential to optimize parameters of the dRICH design in the 
hadronic endcap 

● E.g., dRICH design

○ Large momentum coverage

○ Two radiators: aerogel and gas

○ Legacy design from INFN

■ 6 Identical open sectors 

■ Large focusing mirror 

DIRC

mRICH

dRICH

E. Cisbani, A. Del Dotto, CF*, M. Williams et al. "AI-optimized detector design for the future Electron-Ion Collider: the dual-radiator RICH case." JINST 15.05 (2020): P05009.
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dRICH: ante-proposal
● Two radiators with different refractive indices for continuous 

momentum coverage. 

● Simulation of detector and processes is compute-intensive

● Legacy design from INFN (EICUG2017).

aerogel (4 cm, n(400 nm): 1.02) + 3 mm acrylic filter + gas (1.6 m, n(C2F6): 1.0008)

Define design parametrization and space: optics + geometry 1

2 Come up with a smart objective; 
study / characterize properties 
(noise, stats needed etc): 
simulation + reconstruction 

Optimization framework (embed convergence criteria)3

4 Analysis + Validation

principled vs random

https://agenda.infn.it/event/13037/contributions/17199/attachments/12476/14030/deldotto_EICUG2017.pdf
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EICUG AI WG (AI4EIC) 

AI4EIC workshop 
on October 10-14 2022 at W&M 

https://eic.ai https://indico.bnl.gov/e/AI4EIC

AI4EIC workshop sessions
● Design 
● Theory/Experiment 

connections
● Reconstruction and PID
● Infrastructure and Frontiers 
● Streaming
● Tutorials and Hackathon 

https://indico.bnl.gov/e/AI4EIC
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Conclusions

● AI can assist the design and R&D of complex experimental systems by providing more 
efficient design (considering multiple objectives) utilizing effectively the computing 
resources needed to achieve that.     

● EIC is one of the first experiments to be designed with the support of AI.    

The ECCE reference detector has been already designed taking advantage of a 
multi-objective optimization approach and a complex parametrization of its design which 
takes into account constraints. 

● This workflow can be further extended for EPIC to optimize the reference detector and to 
include:

○ More realistic effects in the simulation and reconstruction techniques 

○ A larger system of sub-detectors, e.g, detectors like the dRICH

● Design optimization pipelines of increased complexity can take advantage of distributed 
computing. 


