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AT for Design

Guo, Kai, et al. Materials Horizons 8.4 (2021

Table 1 Popular ML methods in design of mechanical materials

molecular and drug design.

:1163-1172.

ML method

Characteristics

Example applications in mechanical materials design

Linear regression;
polynomial regression

Support vector machine;
SVR
Random forest

Feedforward neural
network (FFNN); MLP

Recurrent neural network
(RNN); LSTM; GRU

Generative adversarial
networks (GANs)

Gaussian process
regression (GPR);
Bayesian learning

Active learning

Genetic or evolutionary
algorithms

Reinforcement learning

Graph neural networks
(GNNs)

Model the linear or polynomial relationship
between input and output variables

Separate high-dimensional data space with
one or a set of hyperplanes

Construct multiple decision trees for
classification or prediction

Connect nodes (neurons) with information
flowing in one direction

Capture fearures at different hnemrchxcal

Modulus'*? or strength'®* prediction

Strength'** or hardness * prediction; structural topology
optimization'®

Modulus'*? or toughness'*® prediction

Prediction of modulus,””"? strength,”* toughness'* or

hardness;"” prediction of hyperelastic or plastic behaviors;
identification of collision load conditions;"” design of spinodoid
metamaterials’®’

143,145

05 02,108
104,10 102,103 o

Prediction of strain fields or elastic properties
high

levels by operate
on pixel-based or voxel-based data

Connect nodes (neurons) forming a directed
graph with history information stored in
hidden states; operate on sequential data

Train two opponent neural networks to
generate and discriminate sepam(elv until

modulus of unidirectional
composites,'*® stress fields in cantilevered structures, 7 or yield
strength of addi d metals;'*!
fatigue crack pr i ine alloys;
of crystal plasticity; ° des:gn of tessellate composites;
design of stretchable graphene kirigami;***
structural topology optimization>*

136

140

107-109

Prediction of fracture patterns in crystalline solids;'**

of plastic behaviors in
heterogeneous materials;
modeling of porous media'”

prediction
w20

multi-scale

Prediction of modulus distribution by solving inverse
elasticity problems;”“ prediction of strain or stress fields in

the two networks reach
generate new data according to the
distribution of training set

Treat parameters as random variables and
calculate the probability distribution of
these variables; quantify the uncertainty of
model predictions

Interacts with a user on the fly for labeling
new data; augment training data with
post-hoc experiments or simulations

Mimic evolutionary rules for optimizing
objective function

Maximize cumulative awards with agents
reacting to the environments.

design;'** I topology

i gn;
165167 architected materials design

optimization;

Modulus'** or strength'>*'** prediction; design of
ible and fals'0

Strength prediction’**

diction;'** designs of active
51 Gesign of modular metamaterials

Hardness

materials; g

Deriving microstructure-based traction-separation laws'”*

Operate on data
applicable tasks include link predlcuon
node and graph

Hardness materials design®®

Functional space

Desired properties (redox
potential, solubility, toxicity)

simulation (Schrodinger

Chemical space

(Drug-like, photovoltaics,
polymers, dyes)

Z. Zhou et al.

Direct

Experiment or

equation)

It is a relatively new but active area of research.

Many applications in, e.g., industrial material,

, Scientific Reports, vol. 9, n

Inverse

High-throughput virtual
screening (e.g., with 3
filtering stagc s)

1, pp. 1-10, 2019

Inverse

Optimization
evolutionary strategies

generative models (V

GAN,RL)

Fig. 2. Schematic of the different approaches toward molecular design. Inverse design starts
from desired properties and ends in chemical space, unlike the direct approach that leads from

chemical space to the properties.

B. Sanchez-Lengeling, A. Aspuru-Guzik. Science 361.6400 (2018




rZ}—assisted Detector Design

When it comes to designing detectors with Al this is a frontier topic with few examples in the literature.

S. Shirobokov, V. Belavin, M. Kagan, A. Ustyuzhanin, and A.G. Baydin. Black-Box Optimization with Local Generative Surrogates, 2020. arXiv: 2002.04632.
T. Dorigo. Geometry optimization of a muon-electron scattering detector. Physics Open, 4:100022, 2020.

F. Ratnikov. Using machine learning to speed up and improve calorimeter R&D. Journal of Instrumentation, 15(05):C05032, 2020.

E. Cisbani, CF, et al. Al-optimized detector design for the future Electron lon Collider: the dual-radiator RICH case. JINST 15(05):P05009, 2020.

S. Meyer et al. Optimization and performance study of a proton CT system for pre-clinical small animal imaging. Phys. Med. Biol., 65(15):155008, 2020.

CF, et al. (ECCE), Al-assisted Optimization of the ECCE Tracking System at the Electron lon Collider arXiv:2205.09185, 2022

e  For years the full detector design has been studied after the subsystem prototypes are ready (taking into account the phase
constraints from the full detector or outer layers). We need to use advanced simulations which are computationally expensive
(Geant).

e« Modern complex design: many parameters (and multiple objective functions) — curse of dimensionality. Al-assisted
strategies can help designing more efficiently (in terms of performance and resources needed).

https://cfteach.github.io/nnpss/ — NNPSS, MIT 2022
hitps://indico.bnl.gov/event/16328/ — Meeting @Al WG Detector Design

& In this talk | will use the future “EPIC” detector at EIC as an example https://wiki.bnl.gov/EPIC/

(starting from the experience of the detector proposal “ECCE” https://www.ecce-eic.org/)



https://cfteach.github.io/nnpss/
https://indico.bnl.gov/event/16328/
https://wiki.bnl.gov/EPIC/
https://www.ecce-eic.org/

]
I Multi-Objective Optimization flm . I
]
_ " "o
e The problem becomes challenging when the objectives are of conflict to each other, ~ “* " " u
that is, the optimal solution of an objective function is different from that of the other. B\ ou "
e In solving such problems, with or without constraints, they give rise to a trade-off "
optimal solutions, popularly known as Pareto-optimal solutions. -
e MO-based solutions are helping to reveal important hidden knowledge about a problem — a matter which is f2

difficult to achieve otherwise

e In this talk we use both evolutionary (1) and bayesian approaches (2).
o During the proposal phase we utilized (1), which relies on a population approach in its search procedure.
o  After the proposal we implemented and started utilizing (2).

The ECCE Tracker Design Optimization considers simultaneously:

momentum resolution
angular resolution
Kalman filter efficiency
(pointing resolution)

G
New
Baseline

Mechanical constraints Ratio =




IThe Typical Workflow memans ()

International Atomic Energy Agency

° Al can assist in designing more efficiently

detectors (performance, costs). customization

° It helps steering the design (and eventually
fine-tune it). Design parameters

° It can capture hidden correlations among
design parameters.

Detector
Simulation

compute intensive (Geant4)
Forward simulations needed to simulate quantum phenomena 5
(interaction of particles with matter)


https://nucleus.iaea.org/sites/ai4atoms/SitePages/WG-AI4PHY.aspx
https://nucleus.iaea.org/sites/ai4atoms/SitePages/WG-AI4PHY.aspx

rEBpular AI-Strategies (in a nutshell)

Non—-dominated Crowding

: sorting distance
Evolutionary sorting

Population [1]/0]0[1]1]1]0]1]0]0]0]1]0 0/0/1/1]0[1/0/1]0[1[0]1]1

crossover

o/oJ1]1[1]1]o]1]o]o[o]1]0]

, -« Rejected
mutation
[1ToJoJ1T0l1]0]ol0l1]0]1]1 o/ol1]1[1]1]ol1]o]1]0]1]0

This is one of the most popular approach, characterized by: f2 The crowding distance d, of point
e . . [ ) iis a measure of the objective
L Use of an elitist principle space around i which is not
TR . . . |+1 occupied by any other solution in
e  Explicit diversity preserving mechanism the population.

. . . S SR A A

e Emphasis in non-dominated solutions r |

| |

1
The population R;is classified in non-dominated fronts. I ® !
Not all fronts can be accommodated in the N slots of available in the new L - & i-1

population P, .. We use crowding distance to keep those points in the last L
front that contribute to the highest diversity.




I?opular AT-Strategies (in a nutshell) _I

t=3 t=4

Bayesian

New
observation

Posterior
Posterior

o—/_\o

e BO is a sequential strategy
developed for global
optimization.

Acquisition function
Acquisition function

e After gathering evaluations we
builds a posterior distribution ——
used to construct an acquisition

Next
point

function. 1. Select a Sample by Optimizing the Acquisition Function.
2. Evaluate the Sample With the Objective Function.
3. Update the Data and, in turn, the Surrogate Function.

e This cheap function determines 4 GoTo 1.

what is next query point.

i
@ Extension to multiple objectives... - I



rEECE Tracker: Reference VS Projective

Parametrization underlies the Al-assisted design and can explore non-projective as well as projective

| . FST dRICH
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projective
(ongoing R&D)

non-projective

ign (left) and of the ongoing R&D pi to (pllmue the support structure (rigl
, while the labels in blue are the sub-dete that were kept fixed due to geometric:
an optimization on the inner tracker layers (labeled keeping the support structure fixed,
A fixed at about 36.5°. The projective geometry (right) is the result of an ongoing project R&D to reduce the impact of readoul and
services on tracking resolution. 8

CF, et al. (ECCE), Al-assisted Optimization of the ECCE Tracking System at the Electron lon Collider arXiv:2205.09185, 2022




rEECE Tracker: Parametrization

Parametrization of the support structure

g}
o0 — Plateau
‘O_) — Vertex/Sagitta Support
= (z4h’ rmax)

o —— Conical Support ,
Lr) tan @
8 D ”Plateau (Zoh Turweni-1) -

. o T purwell—1
c; FuRwell-1 E (zvtx_h' rvtx_h) e tan 0
'>2 s . o [\Zvtzh = :Zﬁ
E ) h\megch;w\ 77

Point

0 = Support Cone Angle

= == 4 plateau

Parametrization of

Disks, tracking layers, TTL

Geometric Constraints

Disks: r__ andr_. are calculated
based on the support structure.

Sagitta: length fixed and radius
changed based on the cone angle.

Parametrization underlies the Al-assisted design and can explore non-projective as well as projective

i I
@ CF, et al. (ECCE), Al-assisted Optimization of the ECCE Tracking System at the Electron lon Collider arXiv:2205.09185, 2022 o



“Soft”/"“Strong” Constraints

and Checks

min £, (x)

s.t. gj(x) <0,

xiLSx,-SxU

sub-detector

EST/FST disks

EST/FST disks

sagitta layers

hy(x) = 0,

i

constraint

m:l,...

description

.
i

~.
Il

disks | pt i i SN
; Row = Riy _|Rouw —Riy
min s e i
i

d d

Zne1 — Zp >= 10.0 cm

- ||27rsagina | 27T sagitea
min{|———— = [ ———
w

w

Tnsl —1n >=5.0cm

I

soft constraint: sum of residuals
in sensor coverage for d
sensor dimensions: d =
(30.0) mm
strong constraint: minimum
distance between 2 consecutive
disks

soft constraint: residual in
sensor coverage for every layer;
sensor strip width: w = 17.8 mm

strong constraint: minimum
distance between yRwell barrel
layers

Like,
Engineering
Constraints.

GEANT4
unstable with

New Design Point

Check Strong
Constraints

GEANT4 model

HPC-Cluster

issue.

Compute
performance
metric in ‘p’
and ‘7’ bins.
Evaluate Fit

quality

Overlap Checks

Start sim with
timeout

Analyse
Performance & Fits

Penalize Heavily

Penalize Heavily

Do not penalize
Omit the design

Rise Alarm
Do not carry to next
call

Compute objectives and pass to optimizer

10



mteqration during the EIC Detector Proposal _I

Light/smart optimization pipelines ran during the “explorative”

AEOTRUIT T ERES G phase of the detector proposal

necessarily mean “fine-tuning”

e \We want to use these
algorithms to: (1) steer the
design and suggest
parameters that a
“manual’/brute-force
optimization will likely miss to
identify; (2) further optimize
some particular detector
technology (see d-RICH

paper, e.g., optics properties)

Detector Team
Technology Selection
Baseline Design
Alternative Configurations

Physics Team
Physics Signal Selection
Performance Evaluation

Computing Team
Simulations Campaigns

e Al allows to capture hidden Optimization Pipelines
correlations among the

design parameters.

Solutions from Pareto Front

(72)
c
o
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e
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e All “steps” (physics, detector)

involved in the Al o o
optimization, strong interplay New optimization pipelines

I: E@«?: between working groups



https://iopscience.iop.org/article/10.1088/1748-0221/15/05/P05009/meta
https://iopscience.iop.org/article/10.1088/1748-0221/15/05/P05009/meta

Implementation

e Objectives evaluated in fine-grained phase-space

e Propagate uncertainties from fits

25<n| <3.5,6.0<p<8.0GeVic

(sum in bins of 14 bins of P) (Average objective in a n bin)

1 Z/) Wpn* R(f)p,r/
R(f) = =
E> NI] Z Zl) W/)J]

n

Weighted sum with errors

Weighted sum with errors

S



Workflow during proposal and beyond

= N

Al-optimization Parallelization

GEANT4-based simulations
Pymoo u .

Al Suggested
Desigf %loints L, D new E P I C
software-stack

A
5
|

Evaluation of the ‘ i
Design points =

Sort solutions : ) o ) )
Approximate Pareto front /\ Fit objectives in # & p bins
Suggest next set of design points &;.

| /\/ Compute Objectives and metrics




“Navigate” Pareto Front

At each point in the Pareto front
corresponds a design

Can take a snapshot any time Updated Pareto Front at time t
during evaluation

Displyed Soluion o URWELL3 Sagitta [TS3

2000 4000
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L & D 2 D 3 D 20 L § D,
Frack b [GeV Frack p1GeVR) Frack p [GeVR]

-
A
2 MRS o
. .---
Z
2

KF efficiency

3 S 2 5 0 2 2
Frack piGeviey % Frack'p1Gevie] 2 s

t 05<n<1
+

pereteuSel

KF cfficiency
KF cfficiency

-
Treeee

0.5<n<1

- 0 0
s 10— 15 2 0 20 2 1015 20 s 105 20 5 2 510 20 S 10 J5° 20
Hrack' [GeViel rrackp (GeVe] Frack p 1GeVR] i Hrack p [GeVR] Track p [GeVR]

peveeees 0

1<n<15{ _od? 15<n<2 } 2] TTTeTT o
- :

-
-

-

KF efficiency
KF efficiency

- ™ e
L T Trees 15<n<2

25<n<3

Frack FiGe

3<n<35

B 520 T 10 15, 3 > 6T N
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Evolution and Validation | it

Evolution
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—=&— 1* Simulation Campaign
—=&— ECCE Simulation 2021
—=&— ECCE Ongoing R&D

Black points: first simulation campaign, a preliminary detector concept in phase-|

—e
P
I e

YT R e o b o

optimization with no developed support structure;

Blue: fully developed simulations for final ECCE detector proposal; Red: the
ongoing R&D for the optimization of the support structure.

There is an improvement in performance in all n bins with the exception of the
transition region, an artifact of the fact that black do not include a realistic simulation 15<hi<25

1 H T H PWG i it

of the material budget in the transition region! ' e o B
—=&— ECCE Simulation 2021
—=&— ECCE Ongoing R&D

In the transition region, it can be also appreciated the improvement provided by the

projective design
o & & & :.-gi
Observables not directly used in the optimization as objectives 1<hl<15
§ ECCE 2021 Simulation
Performance evaluated after optimization process (both designs) using standard — P F"+

analysis procedures 0=00112 =+ 0.0004
X*/NDF = 2.2885

Notice red points are related to an ongoing project R&D with a projective support
structure for the ECCE tracker.

E.g., DO invariant mass from '
semi-inclusive deep inelastic scattering M(+ K) GeV/c?

1<hi<15
PWG requirement
—=&— 1 Simulation Campaign
—=@— ECCE Simulation 2021
—=&— ECCE Ongoing R&D

1'simulation (black)
not realistic!

- e
’g:tiix

25<hl <35
PWG requirement
—=&— 1" Simulation Campaign
—=&— ECCE Simulation 2021
—=&— ECCE Ongoing R&D

1<hl<15
§ ECCE 2021 Simulation Projective
— D° > a*K Fit

5=0.0100 = 0.0005
X%NDF =1.2031

19 2
M(w* K') GeV/c?



mteractive Navigation of Pareto front _I

Select the Method of Optimization

https://aideicdetopt.pythonanywhere.com

Multi Objective Bayesi izati GEANT4 Visualization of the design

e Use cutting-edge data science tools for
visualization of results from approximated
Pareto front

Design Parameters Table

e Exploration in a multiple objective space

e Facilitate study/comparison of trade-off

¢ pamerun s = et e solutions
FinerEvaIua(ionofMoméntumresoluﬁonforf‘elfcledDesrgn ‘ 7 ® Here MOBO I su Sed USIng B OTorCh / AX
o | (benefit from strong community support
— Meta/Facebook)

.
@ Credits: K. Suresh (U. of Regina) 16 I


https://ai4eicdetopt.pythonanywhere.com

Extension to larger system of sub-detectors _I

e Cherenkov detectors are essential part of the PID system of EPIC

o  Simulating these detectors is typically compute expensive, involving many
photons that need to be tracked through complex surfaces.

o  All of them rely on pattern recognition of ring images in reconstruction, and
the DIRC is the one having the more complex ring patterns!

e Extension of design optimization to tracker + PID system

o Potential to optimize parameters of the dRICH design in the
hadronic endcap

® Eg, dRICH deSign i >N\, PhotoSensor

o  Large momentum coverage

0[GeV] 5

o  Two radiators: aerogel and gas

charged

o  Legacy design from INFN - ".*.5-3-.':-5?..?"?; B

barrel e-endcap

m 6 Identical open sectors

h-endcap

m  Large focusing mirror {’ mRICH 9 DIRC I dRICH g dRICH

erogel




dRICH: ante-proposal

Two radiators with different refractive indices for continuous
momentum coverage.

Simulation of detector and processes is compute-intensive

Legacy design from INFN (EICUG2017).

PhotoSensor

\
\ < o
\ Aerogel + Filter, ‘

gas

particle

aerogel

T
9o
[
3
|
-
o
z
g
[ ]

0[Gev] 5

Define design parametrization and space: optics + geometry

parameter description range [units] tolerance [units]
R mirror radius [290,300] [cm] 100 [pm]
posr radial position of mirror center [125,140] [cm] 100 [pm]
posl longitudinal position of mirror center | [-305,-295] [cm] 100 [pm]

tiles x shift along x of tiles center [-5,5] [cm] 100 [pm]
tiles y shift along y of tiles center [-5,5] [cm] 100 [pm]
tiles z shift along z of tiles center [-105,-95] [cm] 100 [um]
Naerogel aerogel refractive index [1.015,1.030] 0.2%
tacrogel aerogel thickness [3.0,6.0] [cm] 1 [mm)]

_ IK8x) = Gn)llv/Ny

Come up with a smart objective; No 5.2
study / characterize properties %o
(noise, stats needed etc):
simulation + reconstruction

= [t o]

Optimization framework (embed convergence criteria)

EARLY STOPPING | atkll

yes

check /D tell {x}.y [ OPTIMIZATION+ML/DL/RL

N |

monitoring

BO WRAPPER

control convergence

updated model

ANALYSER
nsincton)
FOM i k
FOM j r

(rec

FOM j

jetector)

SIMULATION

(ohysic

N detectors

(5]

—{ settings x
—‘ settings x
L—{ setings x

STARTING
CONFIGURATION

aerogel (optimal)
gas (optimal)
+ aerogel (legacy)
+ gas (legacy)

Analysis + Validation

—
o,

10!

7/K separation

10 20
momentum [GeV/c]



https://agenda.infn.it/event/13037/contributions/17199/attachments/12476/14030/deldotto_EICUG2017.pdf

rE}CUG AT WG (AI4EIC)

https://eic-al https://indico.bnl.qgov/e/AI4EIC

i AI4EIC workshop

on October 10-14 2022 at W&M

AI4EIC - October 10-14, 2022

on Artificial Intelligence for the Electron lon Collider

WILLIAM & MARY

hitne

Design
Theory/Experiment
connections
Reconstruction and PID
Infrastructure and Frontiers
Streaming

I oo Tutorials and Hackathon support@eic.ai

Contacts:

I

]


https://indico.bnl.gov/e/AI4EIC

ITonclusions _I

e Al can assist the design and R&D of complex experimental systems by providing more
efficient design (considering multiple objectives) utilizing effectively the computing
resources needed to achieve that.

e EIC is one of the first experiments to be designed with the support of Al.

The ECCE reference detector has been already designed taking advantage of a

multi-objective optimization approach and a complex parametrization of its design which
takes into account constraints.

e This workflow can be further extended for EPIC to optimize the reference detector and to
include:

o More realistic effects in the simulation and reconstruction techniques
o Alarger system of sub-detectors, e.g, detectors like the dRICH

e Design optimization pipelines of increased complexity can take advantage of distributed

o computing.
W 50



