

Dark Sector in High-Intensity Experiments

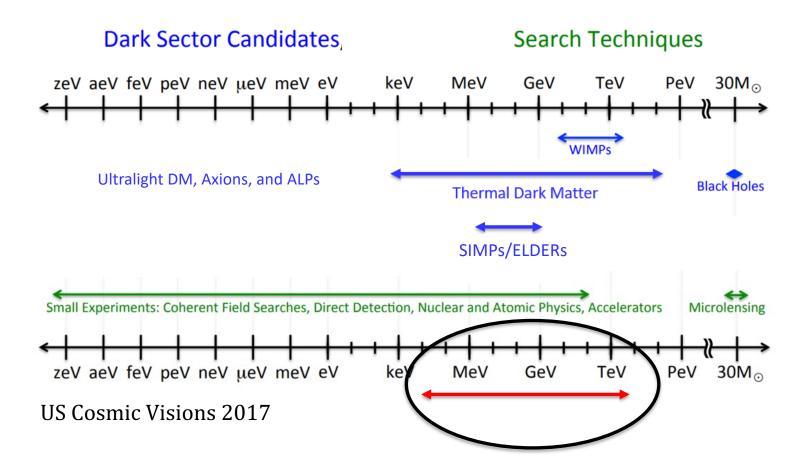
Dr. Yu-Dai Tsai, University California, Irvine

Contact: yudait1@uci.edu; yt444@cornell.edu

arXiv: https://arxiv.org/a/tsai y 1.html

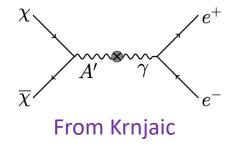
The relevant literatures are growing fast.

Let me know if I have not included your


important works. I will include them to the slides

Contact: yudait1@uci.edu; yt444@cornell.edu

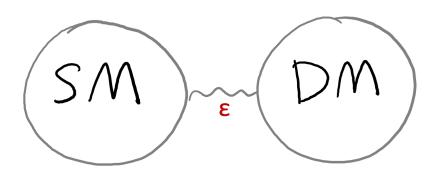
Outline


- Why study "dark sector" theories?
 Why sub-MeV to GeV+ region?
 Why accelerator (intensity) probes?
- Intro to dark sector "portals", dark matter, and anomaly motivated models
- Search overview: accelerator experiments
- Search overview: large (neutrino) observatories

Exploration of Dark Matter & Dark Sector

- Astrophysical/cosmological observations are important to reveal the actual story of dark matter (DM).
- Why accelerator experiments? And why Sub-MeV GeV+?

Thermal Dark Matter & The Rise of Dark Sector


- The Lee-Weinberg bound (1977'): below ~ 2 GeV, DM freezeout through weak-Interaction (e.g. through Z-boson) would overclose the Universe (**not strong enough!!**).
- Could consider ways to get around this but generally light DM needs light mediators to freeze-out to proper relic abundance.
- Mediator is needed for a proper freeze-out: the rise of "dark sector" (DM + mediators + stuffs).
- Neutrino experiments can probe both mediators & dark matter

"Portal" Particles

Renormalizable interactions.

$$\mathcal{L} \supset \left\{ egin{array}{ll} -rac{\epsilon}{2\cos heta_W} B_{\mu
u} F'^{\mu
u} \,, & ext{vector portal} \ (\mu\phi + \lambda\phi^2) H^\dagger H \,, & ext{Higgs portal} \ y_n L H N \,, & ext{neutrino portal} \end{array}
ight.$$

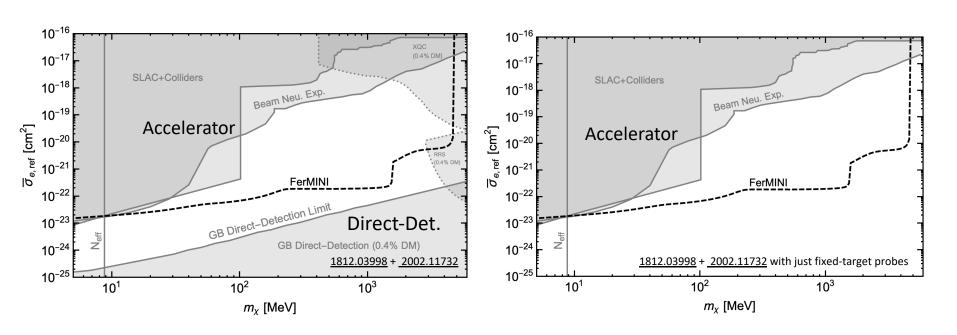
High-Dim. axion portal is also popular

Why study sub-MeV – GeV+ region?

Signals of discoveries grow from anomalies

Maybe nature is telling us something so we don't have to search in the dark? (or probably systematics?)

Some anomalies involving sub-MeV - GeV+ Explanations


•

- Muon g-2 anomaly
- LSND & MiniBooNE anomaly
- EDGES result
- KOTO anomaly
- Beryllium anomaly

•

Below ~ MeV there are also **strong astrophysical/cosmological bounds** that are hard to avoid even with very relaxed assumptions

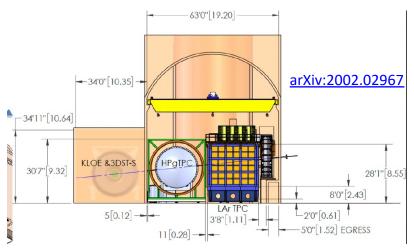
Advantage of Accelerator (Intensity) Searches: Robust Probes & Constraints

Also consider ambient dark matter

Produce dark particles in collisions

Same mass and interaction strength.

Different assumptions


Some details of these figures will be explained later

Energy vs Intensity Frontier

High energy frontier

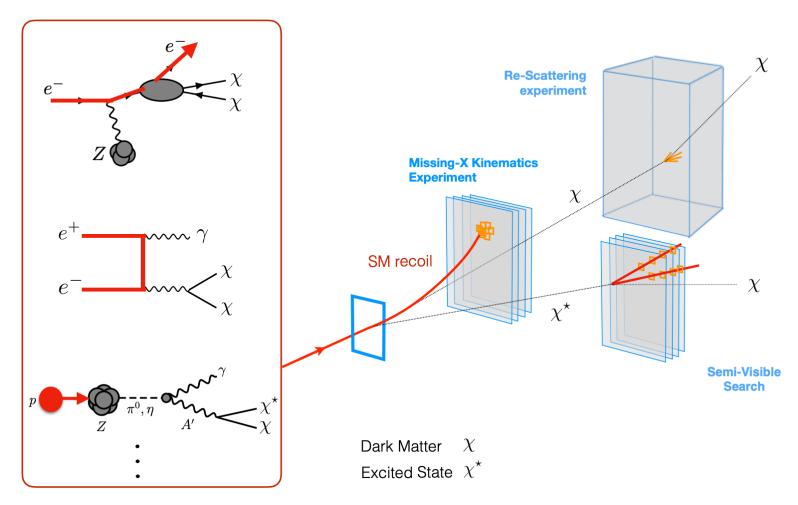
Charged Hadron (e.g. Pion) - - - Neutral Hadron (e.g. Neutro -MET, axial-vector DM=100 GeV, A j+MET, scalar DM=100 GeV, A +MET, vector DM=100 GeV, A v+MET, axial-vector DM=100 GeV, A +MET, ξ=+1, SI/SD DM=100 GeV, Λ I+MET, E=-1, SI/SD DM=100 GeV. **CMS Preliminary** SSM Z'(tt) SSM Z'(jj) SSM Z'(bb) Large Extra SSM Z'(ee)+Z'(µµ) SSM W'(||) SSM W'(|v) single e, Λ HnCM single μ, Λ HnCM inclusive jets, Λ+

Intensity frontier

https://indico.fnal.gov/event/18430/session/8/contribution/17 redesigned from Roni Harnik's slide

Benchmark Models for Dark-Sector Searches

Snowmass RF06 Classification


Benchmarks in Final State x Portal Organization

	DM Production	Mediator Decay Via Portal	Structure of Dark Sector
ector	m_{χ} vs. y [$m_{A}/m_{\chi}=3$, $\alpha_{D}=.5$] m_{A} , vs. y [$\alpha_{D}=0.5$, 3 m_{χ} values] m_{χ} vs. α_{D} [$m_{A}/m_{\chi}=3$, y=y _{fe}] m_{χ} vs. m_{A} [$\alpha_{D}=0.5$, y=y _{fe}] Millicharge m vs. q	m _{A'} vs. ε [decay-mode agnostic] m _{A'} vs. ε [decays]	iDM m _{χ} vs. y [m _{χ} /m _{χ} =3, α _D =.5] (anom connection) SIMP-motivated cascades [slices TBD] U(1) _{B-L/μ-τ/B-3τ} (DM or SM decays)
Scalar	m _χ vs. sinθ [λ=0, fix m _S /m _χ g _D] (thermal target excluded 1512.04119, should still include) Note secluded DM relevance of S→SM of mediator searches	$m_{\rm S}$ vs. sinθ [λ=0] $m_{\rm S}$ vs. sinθ [λ=s.t. Br(H $ ightarrow$ ss ~10-2)]?	Dark Higgssstrahlung (w/vector) scalar SIMP models Leptophilic/leptophobic dark Higgs
Neutrino	e/μ/τ a la1709.07001	$m_{_{ m N}}$ vs. $U_{_{ m e}}$ $m_{_{ m N}}$ vs. $U_{_{ m h}}$ $m_{_{ m N}}$ vs. $U_{_{ m \tau}}$ Think more about reasonable flavor structures	Sterile neutrinos with new forces
ALP		m_a vs. f_{Q} m_a vs. f_{G} m_a vs. $f_{q} = f_{1}$ m_a vs. f_{w}	FV axion couplings

Bold = BRN benchmark, italic=PBC benchmark. others are new suggestions. <u>Underline=CV benchmarks that were not used in BRN</u>

PBC: The Physics Beyond Colliders initiative at CERN

MIMICKING BIG BANG DARK MATTER PRODUCTION AT ACCELERATORS

Krnjaic, Toro, et al, arXiv:2207.00597

YT is charge of the millicharged section, if you have any questions/suggestions regarding that section, (e.g., BDX, see Smith' talk tomorrow)

Overview of benchmark models

Interesting models include:

- 1. Deep Theoretical Motivations
- 2. Thermal Dark Matter
- 3. Explain Anomalies
- 4. Connect to Cosmological or Astrophysical Measurements

Portal Particles, Dark Matter, & Anomalies

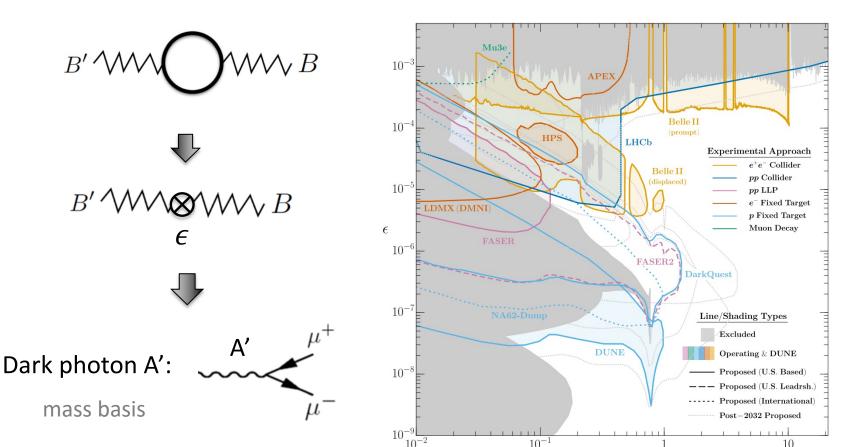
Vector Portal
$$\mathcal{L} \supset \frac{\epsilon}{2\cos\theta_W} F'_{\mu\nu} B^{\mu\nu}.$$

Massless dark photon can lead to millicharged particles

Neutrino Portal
$$\mathcal{L} \supset -y^{\alpha}L_{\alpha}HN + \text{h.c.},$$

Other neutrino coupling to new particles interesting for anomalies

Higgs Portal
$$\mathcal{L} \supset -(AS + \lambda S^2)H^{\dagger}H$$
,

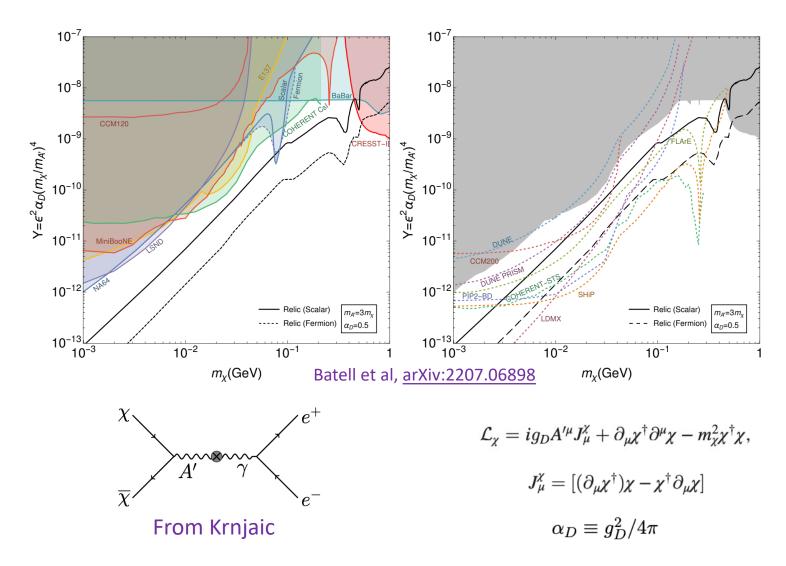

ALP Portal

$$\mathcal{L}_{\mathrm{ALP}} \supset rac{1}{4} g_{a\gamma\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu} + i g_{aee} a \bar{e} \gamma^5 e + i a \bar{\psi}_N \gamma^5 (g_{ann}^{(0)} + g_{ann}^{(1)}) \psi_N,$$

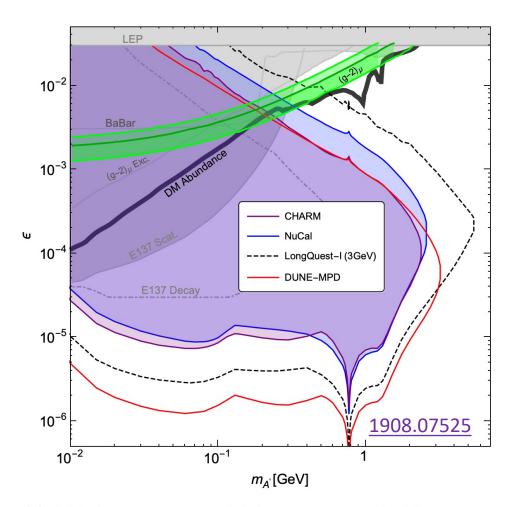
I will discuss cosmogenic ALP in large neutrino observatories

Vector Portal

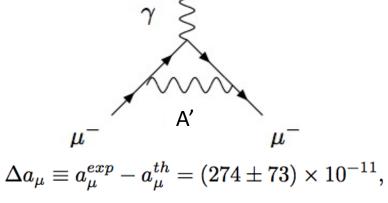
Vector Portal: Dark Photon

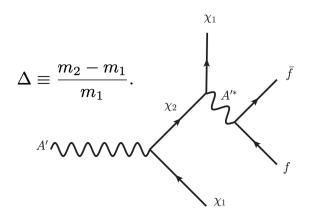

$$\mathcal{L}_{A'} = -\frac{\varepsilon}{2\cos\theta_W} A'_{\mu\nu} B^{\mu\nu} - \frac{1}{2} m_{A'} A'_{\mu} A'^{\nu} \quad \vdots$$

Batell, Blinov, Hearty, McGehee, 2207.06905


 $m_{A'}$ [GeV]

See also **Tsai**, deNiverville, Liu, <u>1908.07525</u>, PRL 21, for the **LongQuest** projections & CHARM / NuCal Updates

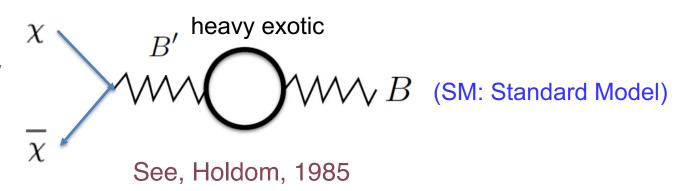

Vector Portal Dark Matter


Inelastic Dark Matter & Muon g-2 explainer

(a) iDM: $\Delta=0.4,~\alpha_D=0.1.$ With muon g-2 and DM regimes. $m_{A'}/m_{\chi 1}=$ 3, with preliminary DUNE results

See, e.g., Fayet, 2007 (hep-ph/0702176)

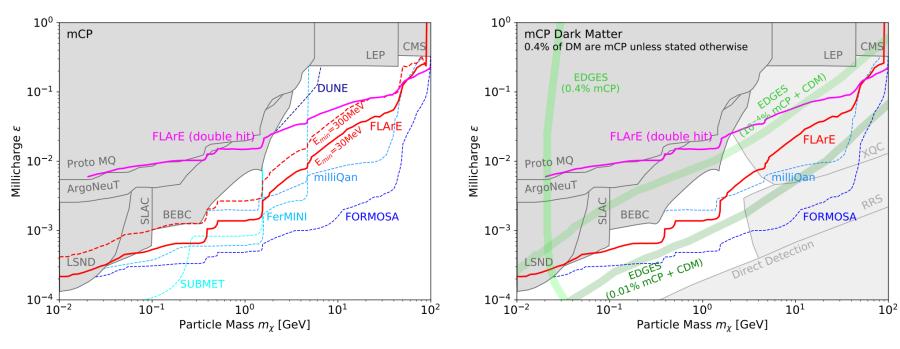
 See also Mohlabeng PRD 20, arXiv:1902.05075


Millicharged Dark Sector

Motivations of Millicharged Particle & Dark Matter

- Is electric charge quantized and why? A long-standing question!
- SM U(1) allows arbitrarily small (any real number) charges. Why don't we see them? Motivates **Dirac quantization, Grand Unified Theory (GUT)**, to explain such quantization (anomaly cancellations fix some SM $U(1)_Y$ charge assignments)
- MCP (not confined) is predicted by some Superstring theories:
 Wen, Witten, Nucl. Phys. B 261 (1985) 651-677
 https://www.youtube.com/watch?v=AmUI2qf9uyo (watch 15:50 to 17:28)
- Link to string compactification and quantum gravity (Shiu, Soler, Ye, PRL '13)

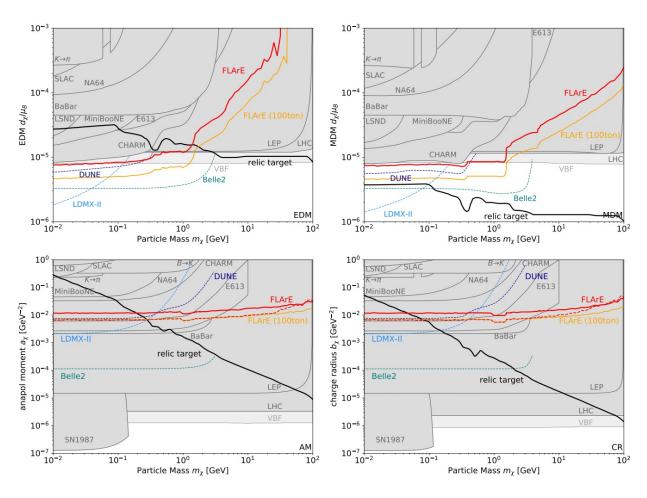
Kinetic Mixing and Millicharge Phase


 Coupled to new dark fermion χ

$$\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{4}B'_{\mu\nu}B'^{\mu\nu} - \frac{\kappa}{2}B'_{\mu\nu}B^{\mu\nu} + i\bar{\chi}(\partial \!\!\!/ + ie' \!\!\!\!/ B' + iM_{MCP})\chi$$

- New fermion χ charged under new gauge boson B'.
- Millicharged particle (MCP) can be a low-energy consequence
 of massless dark photon (a new U(1) gauge boson) coupled to
 a new fermion (become MCP in a convenient basis.)

Millicharge Particles & Dark Matter


- Simply a search for particles with {mass, electric charge} = $\{m_\chi, \epsilon e\}$ $\epsilon = Q_\chi/e$
- Probes include our works on Neutrino Experiments: Magill, Plestid, Pospelov, Tsai, arXiv:1806.03310, PRL19;

Neutrino Observatories: Plestid, Takhistov, **Tsai**, et al, <u>arXiv:2002.11732</u>, PRD20;

FORMOSA: Foroughi-Abari, Kling, Tsai, arXiv:2010.07941, PRD 21;

FLArE: Kling, Kuo, Trojanowski, Tsai: arXiv:2205.09137

Dark Sector with other EM Form Factors

$$\mathcal{L}_{\chi} \supset \epsilon e \bar{\chi} \gamma^{\mu} \chi A_{\mu} + \frac{1}{2} \mu_{\chi} \bar{\chi} \sigma^{\mu\nu} \chi F_{\mu\nu} + \frac{i}{2} d_{\chi} \bar{\chi} \sigma^{\mu\nu} \gamma^{5} \chi F_{\mu\nu} + a_{\chi} \bar{\chi} \gamma^{\mu} \gamma^{5} \chi \partial^{\nu} F_{\mu\nu} + b_{\chi} \bar{\chi} \gamma^{\mu} \chi \partial^{\nu} F_{\mu\nu} ,$$

Kling, Kuo, Trojanowski, and **Tsai,** arXiv:2205.09137

Neutrino Portal

Heavy Neutral Lepton

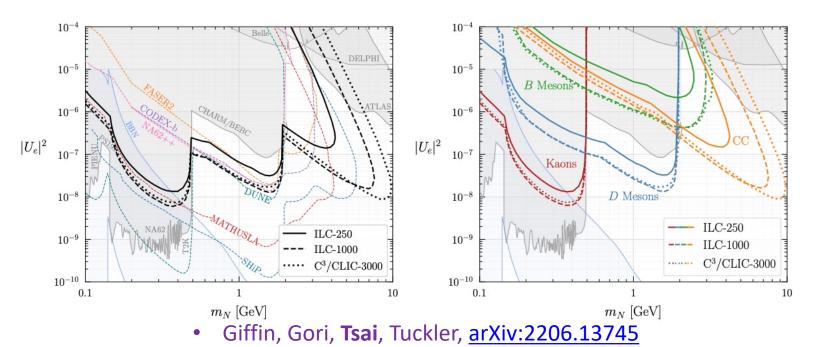
$$\mathcal{L} \supset -y^{\alpha}L_{\alpha}HN + \text{h.c.},$$

where y^{α} is a Yukawa coupling with $\alpha = e, \mu, \tau$.

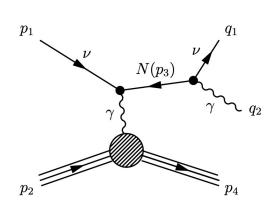
- After EW symmetry breaking, the HNLs mix with the SM neutrinos
- Follow the convention of considering a single HNL that dominantly mixes with a specific neutrino flavor, i.e., dominant electron-, muon-, or tau- flavor mixing.
- Phenomenology characterized by the HNL mass, m_N , and mixing angle:


$$|\mathit{U}_{eN}|^2$$
 , $|\mathit{U}_{\mu N}|^2$, $|\mathit{U}_{\tau N}|^2$

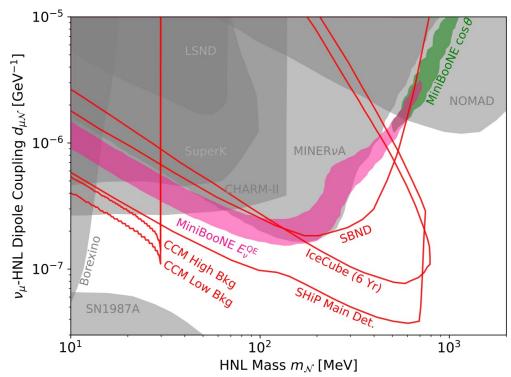
See, e.g., Snowmass Whitepaper, Batell et al, arXIv:2207.06905


Heavy Neutral Lepton

Electron Collider Beam-Dump Searches for HNL



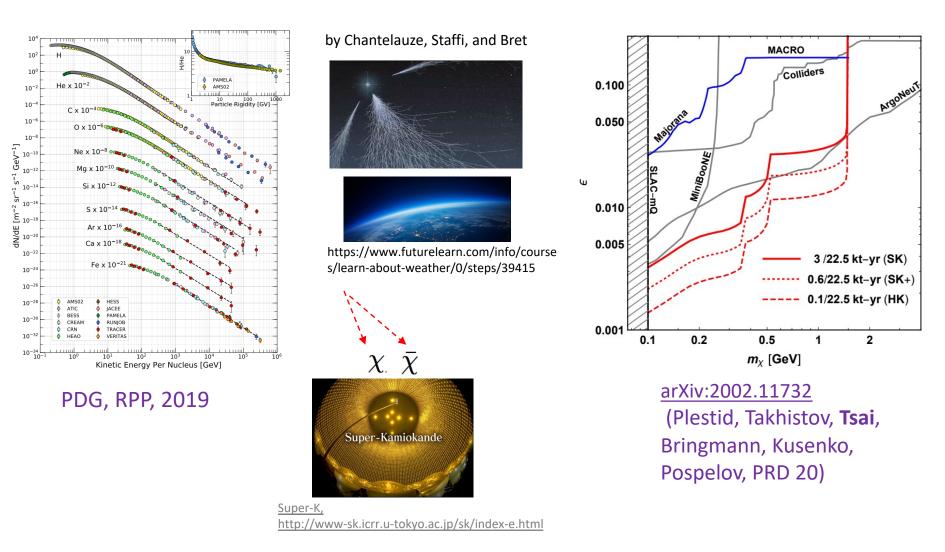
Can be designed for other e +e – colliders as ILC, C3, CLIC, FCC-ee, and CEPC.



Nojiri, Sakaki, Tobioka, Ueda, arXiv:2206.13523

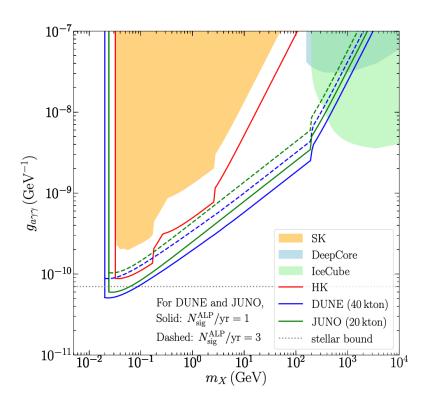
Dipole Portal Heavy Neutral Lepton

Magill, Plestid, Pospelov, **Tsai**, PRD 18, arXiv:1803.03262



New Fig from Kamp; Ref: Batell, ..., Tsai, arXiv:2207.06898;

$$\mathcal{L} \supset \bar{N}(i\partial \!\!\!/ - m_N)N + (d\bar{\nu}_L \sigma_{\mu\nu} F^{\mu\nu} N + h.c).$$


Searches in Large Neutrino Observatories

Millicharge Searches at Neutrino Observatories

1111.5031, Super-K Collaboration, PRD12

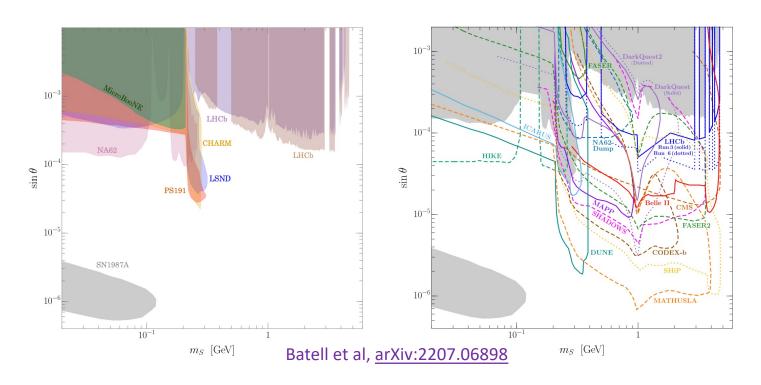
Cosmogenic Axion-Like Particles (ALP) at Neutrino Observatories

$$\mathcal{L}_{
m ALP} \supset rac{1}{4} g_{a\gamma\gamma} a F_{\mu
u} ilde{F}^{\mu
u}$$

Cui, Kuo, Pradler, and Tsai, arXiv:2207.13107

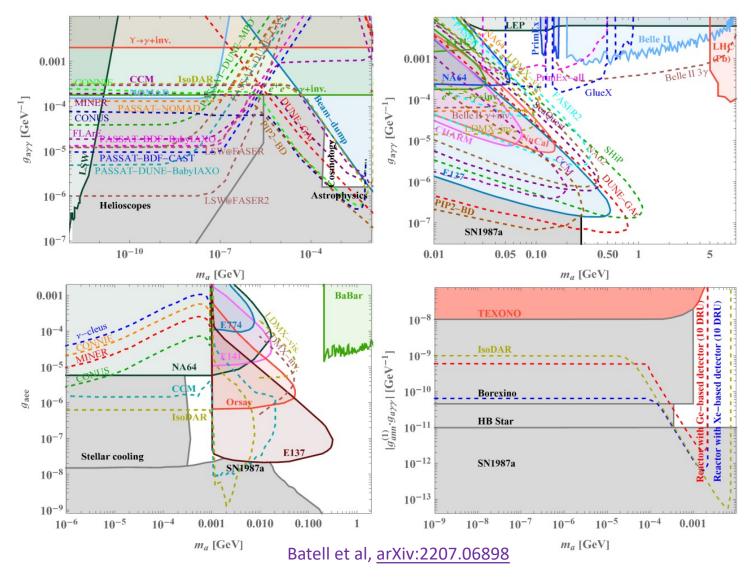
Interesting models include

- 1. Deep Theoretical Motivations
- 2. Thermal Dark Matter
- 3. Explain Anomalies
- 4. Connect to Cosmological or Astrophysical Measurements


Summary & Outlook

- Intensity searches provide strong probes of rich dark sector motivated by dark matter and experimental anomalies
- One of the main efforts for our community in the next 5 to 10 years.
- Explore other models with other theory motivations & beyond the simplified models: connecting to string theory, grand unification theory, etc.
- Models with also signatures in cosmological measurements, direct detection, and astrophysical observations, are prime targets for the future

Higgs & ALP Portal:


Both have very interesting dark matter phenomenology; only show minimal models here

Higgs Portal

$$\mathcal{L} \supset \sin \theta \, S \left(\frac{2m_W^2}{v} W_{\mu}^+ W^{\mu -} + \frac{m_Z^2}{v} Z_{\mu} Z^{\mu} - \sum_f \frac{m_f}{v} \bar{f} f \right),$$

ALP Portal

$$\mathcal{L}_{\mathrm{ALP}} \supset \frac{1}{4} g_{a\gamma\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu} + i g_{aee} a \bar{e} \gamma^5 e^{-+} \dots$$

Thank you!