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Outline
• Hamiltonian Effective Field Theory (HEFT)
◦ Nonperturbative extension of chiral effective field theory aimed at resonance physics.
◦ Incorporates the Lüscher formalism.
◦ Connects scattering observables to the finite-volume spectrum of lattice QCD.

• ∆ Resonance: introduce HEFT and illustrate the constraints provided by Lüscher.
◦ Discuss the role of lattice QCD results in constraining the description of multi-channel

scattering processes.

• Odd-parity N∗(1535) and N∗(1650) Resonances:
◦ Knowledge of eigenstate composition can be used to understand lattice QCD results.

• Roper N(1440) Resonance:
◦ Lattice QCD results constrain the HEFT description of experimental data.
◦ Provides deep insight into the nature of the Roper resonance.

• Conclusions
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Hamiltonian Effective Field Theory (HEFT)
J. M. M. Hall, et al. [CSSM], Phys. Rev. D 87 (2013) 094510 [arXiv:1303.4157 [hep-lat]]

C. D. Abell, D. B. L., A. W. Thomas and J. J. Wu, Phys. Rev. D 106 (2022) 034506 [arXiv:2110.14113 [hep-lat]]

• An extension of chiral effective field theory incorporating the Lüscher formalism
◦ Linking the energy levels observed in finite volume to scattering observables.

• In the light quark-mass regime, in the perturbative limit,
◦ HEFT reproduces the finite-volume expansion of chiral perturbation theory.

• Fitting resonance phase-shift data and inelasticities,
◦ Predictions of the finite-volume spectrum are made.

• The eigenvectors of the Hamiltonian provide insight into the composition of the
energy eigenstates.
◦ Insight is similar to that provided by correlation-matrix eigenvectors in Lattice QCD.
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Infinite Volume Model

• The rest-frame Hamiltonian has the form H = H0 +HI , with

H0 =
∑
B0

|B0〉mB0 〈B0|+
∑
α

∫
d3k |α(k)〉ωα(k) 〈α(k)| ,

• |B0〉 denotes a quark-model-like basis state.

• |α(k)〉 designates a two-particle non-interacting basis-state channel with energy

ωα(k) = ωαM (k) + ωαB (k) =
√

k2 +m2
αM

+
√

k2 +m2
αB
,

for M = Meson, B = Baryon.
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Infinite Volume Model

• The interaction Hamiltonian includes two parts, HI = g + v.

• 1→ 2 particle vertex

g =
∑
α,B0

∫
d3k

{
|α(k)〉G†α,B0

(k) 〈B0|+ h.c.
}
,

∆(0) π(−k)

N(k)

• 2→ 2 particle vertex

v =
∑
α,β

∫
d3k d3k′ |α(k)〉V S

α,β(k, k′) 〈β(k′)| .
π(−k)

N(k)

π(−k′)

∆(k′)
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S-wave vertex interactions

• S-wave vertex interactions between the one baryon and two-particle meson-baryon
channels for e.g. N∗(1535) or Λ∗(1405) cases take the form

Gα,B0(k) = gB0α

√
3

2π fπ

√
ωαM (k)u(k, Λ) ,

B0
αM (−k)

αB(k)

with regulator

u(k, Λ) =
(

1 + k2

Λ2

)−2

, and fixed Λ ∼ 0.8→ 1.0 GeV.
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P -wave and higher vertex interactions

• P -wave vertex interactions between the one baryon and two-particle meson-baryon
channels for e.g. for the ∆(1232) or N∗(1440) case cases take the form

Gα,B0(k) = gB0α
1

4π2

(
k

fπ

)lα u(k, Λ)√
ωαM (k)

,
B0

αM (−k)

αB(k)

where lα is the orbital angular momentum in channel α.

7 of 53



Two-to-two particle interactions

• For the direct two-to-two particle interaction, we introduce separable potentials.

• For the S11 πN channel

V S
πN,πN ( k, k′ ) = vπN,πN

3
4π2 f2

π

ũπN (k, Λ) ũπN (k′, Λ)

π(−k)

N(k)

π(−k′)

N(k′)

where the scattering potential gains a low energy enhancement via

ũπN (k, Λ) = u(k, Λ) m
phys
π + ωπ(k)
ωπ(k)

and u(k, Λ) takes the dipole form.
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Two-to-two particle interactions

• For P -wave scattering in the ∆(1232) or N∗(1440) channels

V S
α,β ( k, k′ ) = vα,β

1
4π2 f2

π

k

ωαM (k)
k′

ωβM (k′) u(k, Λ)u(k′, Λ) .

π(−k)

N(k)

π(−k′)

∆(k′)
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Infinite-Volume scattering amplitude
• The T -matrices for two particle scattering are obtained by solving the

coupled-channel integral equations

Tα,β(k, k′;E) = Ṽα,β(k, k′;E) +
∑
γ

∫
q2dq

Ṽα,γ(k, q;E)Tγ,β(q, k′;E)
E − ωγ(q) + iε

.

• The coupled-channel potential is readily calculated from the interaction Hamiltonian

Ṽα,β(k, k′) =
∑
B0

G†α,B0
(k)Gβ,B0(k′)
E −mB0

+ V S
α,β(k, k′) ,

π(−k)

N(k)

∆(0) π(−k′)

∆(k′)
+

π(−k)

N(k)

π(−k′)

∆(k′)
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∑
γ

∫
q2dq
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Infinite-Volume scattering matrix
• The S-matrix is related to the T -matrix by

Sα,β(E) = 1− 2i
√
ρα(E) ρβ(E) Tα,β(kα cm, kβ cm;E) ,

with
ρα(E) = π

ωαM (kα cm)ωαB (kα cm)
E

kα cm ,

and kα cm satisfies the on-shell condition

ωαM (kα cm) + ωαB (kα cm) = E .

• The cross section σα ,β for the process α→ β is

σα ,β = 4π3 kα cm ωαM (kα cm)ωαB (kα cm)ωβM (kα cm)ωβB (kα cm)
E2 kβ cm

|Tα,β(kα cm, kβ cm;E)|2 .
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πN phase shift and inelasticity

• The S-matrix is related to the T -matrix by

SπN,πN (E) = 1− 2iπ ωπ(kcm)ωN (kcm)
E

kcm TπN,πN (kcm, kcm;E) ,

= η(E) e2i δ(E) .

• In solving for the energy eigenstates. . .
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P -wave πN phase shifts in the ∆ channel - 1 πN channel

1.10 1.15 1.20 1.25 1.30 1.35
E (GeV)

0

20

40

60

80

100

120

140

160

180

δ π
N

13 of 53



Finite Volume Analysis
• In a finite periodic volume, momentum is quantised to n (2π/L).

• In a cubic volume of extent L on each side, define the momentum magnitudes

kn =
√
n2
x + n2

y + n2
z

2π
L
,

with ni = 0, 1, 2, . . . and integer n = n2
x + n2

y + n2
z.

• The non-interacting Hamiltonian takes the form

H0 =



mB0 0 0 · · ·

0
ωπN (k0)

. . .
ωπ∆(k0)

0 · · ·

0 0
ωπN (k1)

. . .
ωπ∆(k1)

· · ·

...
...

...
. . .


.
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1→ 2 particle interaction terms
• 1→ 2 particle interaction terms sit in the first row and column.

HI =



0 gπN (k0) · · · gπ∆(k0) gπN (k1) · · · gπ∆(k1) · · ·
gπN (k0) 0 · · ·

...
... 0

gπ∆(k0)
. . .

gπN (k1)
...

gπ∆(k1)
...


.

• 2→ 2 particle interaction terms fill out the rest of the Hamiltonian matrix.
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Finite Volume Eigenmode Solution

• Standard Lapack routines provide eigenmode solutions of

〈 i |H | j 〉 〈 j |Eα 〉 = Eα 〈 i |Eα 〉 ,

◦ where | i 〉 and | j 〉 are the non-interacting basis states,
◦ Eα is the energy eigenvalue, and
◦ 〈 i |Eα 〉 is the eigenvector of the
◦ Hamiltonian matrix 〈 i |H | j 〉.
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Energy eigenstates on an L = 5 fm lattice for different regulators

10 20 30 40 50 60

Λ2 (GeV2)

1.1

1.2

1.3

1.4

1.5

1.6

E
(G

eV
)

L = 5.00 fm

• Incorporation of the Lüscher formalism ensures energy eigenstates below 1.35 GeV
are model independent.
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P -wave πN scattering in the ∆ channel - 2 channel πN and π∆
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• Anticipate regulator independence to 1.7 GeV.
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Energy eigenstates on an L = 5 fm lattice for different regulators
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• πN scattering data alone is insufficient to uniquely constrain the Hamiltonian.
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Mass dependence of energy eigenstates - Fit to PACS-CS ∆ masses
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• Lattice QCD results can constrain the Hamiltonian description of experimental data.
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CLS Consortium finite-volume lattice energies of ∆-channel excitations
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• C. Morningstar, et al. PoS LATTICE2021 (2022),

170 [arXiv:2111.07755 [hep-lat]].

• C. W. Andersen, J. Bulava, B. Hörz and

C. Morningstar, Phys. Rev. D 97 (2018) no.1,
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Examination of low-lying odd-parity nucleon resonances

• Motivated by lattice QCD calculations of the electromagnetic form factors of the
two low-lying odd-parity states.

• Parity-expanded variational analysis (PEVA) removes opposite-parity contaminants.

• Confirms quark model predictions for N∗ magnetic moments.

• F. M. Stokes, W. Kamleh and D. B. L., Phys. Rev. D 102 (2020) 014507
[arXiv:1907.00177 [hep-lat]].
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N ∗ Magnetic Moments and the constituent quark model
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Examination of low-lying odd-parity nucleon resonances

• Motivated by lattice QCD calculations of the electromagnetic form factors of the
two low-lying odd-parity states
◦ Parity-expanded variational analysis (PEVA) removes opposite-parity contaminants.
◦ Confirms quark model predictions for N∗ magnetic moments.
◦ F. M. Stokes, W. Kamleh and D. B. L., Phys. Rev. D 102 (2020) 014507 [arXiv:1907.00177 [hep-lat]].

• Perform the first HEFT analysis with two bare basis states
◦ One associated with the N*(1535) and the other with the N*(1650).

• Includes three meson-baryon scattering channels, πN , ηN , and KΛ.

• 21 parameter fit provides an excellent characterisation of the data.
◦ Pole positions agree with PDG.
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Phase shift and inelasticity for the low-lying odd-parity spin-1/2 nucleon resonances
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• WI08 single-energy data from SAID.
• Vertical lines indicate the opening of the ηN and KΛ thresholds.
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Finite Volume Eigenmode Solution

• Standard Lapack routines provide eigenmode solutions of

〈 i |H | j 〉 〈 j |Eα 〉 = Eα 〈 i |Eα 〉 .

• Eigenvector 〈 i |Eα 〉 describes the composition of the eigenstate |Eα 〉 in terms of
the basis states | i 〉 with

| i 〉 = |B0 〉, |πN, k0 〉, |πN, k1 〉, · · · | ηN, k0 〉, | ηN, k1 〉, · · · .

• The overlap of the bare basis state |B0 〉 with eigenstate |Eα 〉,

〈B0 |Eα 〉 ,

is of particular interest,
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Finite Volume Eigenmode Solution
• In Hamiltonian EFT, the only localised basis state is the bare basis state.

• Bär has highlighted how χPT provides an estimate of the direct coupling of a
smeared nucleon interpolating field to a non-interacting πN (basis) state.

3
16

1
(fπ L)2Eπ L

(
EN −MN

EN

)
∼ 10−3 ,

relative to the ground state.
• Conclude the smeared interpolating fields of lattice QCD are associated with the

bare basis states of HEFT
χ(0) |Ω〉 ' |B0〉 ,

• Thus, element 〈B0 |Eα 〉 of the eigenvector governs the likelihood of observing
eigenstate |Eα 〉.
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Finite-volume L = 3 fm energy levels for low-lying odd-parity spin-1/2 nucleons
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Finite-volume L = 2 fm energy levels for low-lying odd-parity spin-1/2 nucleons
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Where is the Roper resonance?
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• CSSM: Z. W. Liu, et al. [CSSM], Phys. Rev. D 95, 034034 (2017) arXiv:1607.04536 [nucl-th]
• Cyprus: C. Alexandrou, et al. (AMIAS), Phys. Rev. D 91, 014506 (2015) arXiv:1411.6765 [hep-lat]
• JLab: R. G. Edwards, et al. [HSC] Phys. Rev. D 84, 074508 (2011) [arXiv:1104.5152 [hep-ph]].
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Search for low-lying lattice QCD eigenstates in the Roper regime
A. L. Kiratidis, et al., [CSSM] Phys. Rev. D 95, no. 7, 074507 (2017) [arXiv:1608.03051 [hep-lat]].

1 2 3 4 5 6 7
Basis Number

1.2

1.4

1.6

1.8

2.0

2.2

2.4

M
(G

eV
)

1 → χ1 + χ2

2 → χ1 + χ2 + χa0N

3 → χ1 + χ2 + χa0N + χ′a0N

4 → χπN + χ′πN + χa0N

5 → χπN + χ′πN + χa0N + χ′a0N

6 → χπN + χ′πN + χσN + χ′σN
7 → χσN + χ′σN + χa0N + χ′a0N
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Have we seen the 2s excitation of the quark model?
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Landau-Gauge Wave functions from the Lattice

• Measure the overlap of the annihilation operator with the state
as a function of the quark positions.
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d-quark probability density in ground state proton [CSSM]
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d-quark probability density in 1st excited state of proton [CSSM]
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d-quark probability density in N = 3 excited state of proton [CSSM]
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Comparison with the Simple Quark Model [CSSM]
D. S. Roberts, W. Kamleh and D. B. Leinweber, Phys. Lett. B 725, 164 (2013) [arXiv:1304.0325 [hep-lat]].
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First positive-parity excitation: Charge Radii
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First positive-parity excitation: Magnetic moments
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Are these lattice results consistent with the Roper Resonance?
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Positive-parity Nucleon Spectrum: Bare Roper Case with m0 = 1.7 GeV
• Consider πN , π∆ and σN channels, dressing a bare state.
• Fit to phase shift and inelasticity. (dashed blue curve)
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• Fit yields two poles in the region of the PDG estimate 1365± 15− i 95± 15 MeV.
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1.7 GeV Bare Roper: Hamiltonian Model N ′ Spectrum
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Positive-parity Nucleon Spectrum: Bare Roper Case with m0 = 2.0 GeV
J. j. Wu, et al. [CSSM], arXiv:1703.10715 [nucl-th]

• Consider πN , π∆ and σN channels, dressing a bare state.
• Fit to phase shift and inelasticity. (red curve)
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• Fit yields a pole at 1393− i 167 MeV ∼ PDG estimate 1365± 15− i 95± 15 MeV.
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2.0 GeV Bare Roper: Hamiltonian Model N ′ Spectrum
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2.0 GeV Bare Roper: Hamiltonian Model N ′ Spectrum

0 . 0 0 0 . 0 5 0 . 1 0 0 . 1 5 0 . 2 0 0 . 2 5 0 . 3 0 0 . 3 5 0 . 4 0

1 . 4

1 . 6

1 . 8

2 . 0

2 . 2

2 . 4

E (
Ge

V)

m 2
π
 ( G e V 2 )

0
5 0

1 0 0

0
5 0

1 0 0

0
5 0

1 0 0

0
5 0

1 0 0

0 . 0 0 . 1 0 . 2 0 . 3
0

5 0
1 0 0

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4

E 1

 

 

E 2

E 3 E 4

E 5

|<S
tat

e|E
i>|2  (%

)

E 6

E 7 E 8

E 9

m 2
π
 ( G e V 2 )

E 1 0

πN , π∆ and σN channels, dressing a bare state.
C. B. Lang, L. Leskovec, M. Padmanath and S. Prelovsek, Phys. Rev. D 95, no. 1, 014510 (2017) [arXiv:1610.01422 [hep-lat]].
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Two different descriptions of the Roper resonance

0 . 0 0 0 . 0 5 0 . 1 0 0 . 1 5 0 . 2 0 0 . 2 5 0 . 3 0 0 . 3 5 0 . 4 0

1 . 4

1 . 6

1 . 8

2 . 0

2 . 2

2 . 4

E (
Ge

V)

m 2
π
 ( G e V 2 )

0 . 0 0 0 . 0 5 0 . 1 0 0 . 1 5 0 . 2 0 0 . 2 5 0 . 3 0 0 . 3 5 0 . 4 0

1 . 4

1 . 6

1 . 8

2 . 0

2 . 2

2 . 4

E (
Ge

V)

m 2
π
 ( G e V 2 )

(left) Resonance generated by strong rescattering in meson-baryon channels.
(right) Meson dressings of a quark-model like core.
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∆-baryon spectrum from lattice QCD

HSC: J. Bulava, et al., Phys. Rev. D 82 (2010) 014507 [arXiv:1004.5072 [hep-lat]].

JLab: T. Khan, D. Richards and F. Winter, Phys. Rev. D 104 (2021) 034503 [arXiv:2010.03052 [hep-lat]].

PACS-CS: S. Aoki et al. [PACS-CS], Phys. Rev. D 79 (2009) 034503 [arXiv:0807.1661 [hep-lat]].
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Conclusions
• Hamiltonian Effective Field Theory (HEFT)
◦ Nonperturbative extension of chiral effective field theory aimed at resonance physics.
◦ Incorporates the Lüscher formalism.
◦ Connects infinite-volume scattering observables to finite-volume Lattice QCD.

◦ Connects lattice results at different quark masses within a single formalism.
◦ Provides insight into the composition of energy eigenstates.
◦ Facilitates an understanding of lattice QCD results.
◦ With lattice QCD constraints, HEFT provides deep insight into resonance structure.

• ∆ Resonance: illustrate Lüscher constraints and the role of lattice QCD constraints.
• Odd-parity N∗(1535) and N∗(1650) Resonances:
◦ Knowledge of eigenstate composition can be used to understand the states observed.
◦ Dominated by a quark-core bare state dressed by meson degrees of freedom.

• Roper N(1440) Resonance: Arises from dynamical coupled-channel effects.

◦ Lattice QCD results constrain the HEFT description of experimental data.
◦ State composition matches when the 2s excitation of the quark model sits at ∼ 2 GeV.
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