Few-Neutron Systems in Pionless EFT

Sebastian König

9th International Conference on Quarks and Nuclear Physics

Virtual Talk, September 5, 2022

S. Dietz, H.-W. Hammer, SK, A. Schwenk, PRC **105** 064002 (2022) SK et al., in preparation

Thanks...

...to my students and collaborators...

- S. Dietz, H.-W. Hammer, A. Schwenk (TU Darmstadt)
- H. Yu, N. Yapa, A. Andis, A. Taurence (NCSU)
- D. Lee (FRIB/MSU), K. Fossez (FSU)
- P. Klos, J. Lynn
- ...

... for support, funding, and computing time...

• Jülich Supercomputing Center

Few-neutron systems

Ongoing searches and speculations

• bound dineutron not excluded by pionless EFT

Kirscher + Phillips, PRC 84 054004 (2011); SK et al., PLB 736 208 (2014)

new speculations about a three-neutron resonance...

Gandolfi et al., PRL **118** 232501 (2017)

…although excluded by previous work

Lazauskas + Carbonell, PRC 71 044004 (2005); Offermann + Glöckle, NPA 318 138 (1979)

• experimental evidence for tetraneutron resonance?

Kisamori et al., PRL 116 052501 (2016), Duer et al., Nature 606 678 (2022)

Tetraneutron situation

Observation at RIKEN (2016)

Kisamori et al., PRL 116 052501 (2016)

- double-charge exchange reaction
- excess of near threshold events hints at possible resonance
- motivated follow-up experiment

Tetraneutron situation

Observation at RIKEN (2022)

- knockout reaction: scattering ⁸He beam off proton target
- clear peak with resonance shape around 2 MeV
- theory suggests alternative explanations (phase space + FSI)

Higgins et al., PRC 103 024004 (2021), Lazauskas et al., arXiv:2207.07575 [nucl-th]

Nuclear effective field theories

- choose degrees of freedom approriate to energy scale
- only restricted by symmetry, ordered by power counting

- degrees of freedom here: nucleons (and/or clusters thereof)
- even more effective d.o.f.: rotations, vibrations

Papenbrock, NPA 852 36 (2011); ...

- most effective theory depends on energy scale and nucleus of interest
- matching different EFTs can leverage the reach of ab initio calculations

Pionless EFT

- only contact (zero-range) forces (plus electromagnetism)
- closely linked to universality for large scattering lengths
- excels at low energies, exact range of validity still an open question

Pionless EFT

- only contact (zero-range) forces (plus electromagnetism)
- closely linked to universality for large scattering lengths
- excels at low energies, exact range of validity still an open question
- no leading-order 3n force for pure neutron systems

Three-neutron system in pionless EFT

Pionless effective field theory

- at very low energies the nuclear force reduces to contact interactions
- not sensitive to short-range details such as pion exchange
- range corrections enter perturbatively via derivatives
 - power counting provides systematic expansion
- naturally captures large nn scattering length

$$V(p,p') = C_0(a_{nn};\Lambda)\,g(p)g(p') \;\;,\;\;g(p) = {
m e}^{-p^2/\Lambda^2}$$

Three-neutron system in pionless EFT

Pionless effective field theory

- at very low energies the nuclear force reduces to contact interactions
- not sensitive to short-range details such as pion exchange
- range corrections enter perturbatively via derivatives
 - power counting provides systematic expansion
- naturally captures large nn scattering length

$$V(p,p') = C_0(a_{nn};\Lambda)\,g(p)g(p') \;\;,\;\; g(p) = {
m e}^{-p^2/\Lambda^2}$$

Outline

• search for resonance states with two direct methods

Dietz, SK et al., PRC 105 064002 (2022)

analytic continuation of Faddeev equation to complex plane

following Glöckle, PRC 18 564 (1978); Afnan, Aust. J. Phys. 44 201 (1991)

- finite-volume energy levels in very large boxes
- finite-volume eigenvector continuation
- three-neutron scaling exponents

following Klos, SK et al., PRC 98 034004 (2018)

Yapa+König, PRC **106** 014309 (2022)

Dietz, SK et al., work in progress

Three-body equation

• consider the Faddeev equation with separable interaction

$$F(q) = -\frac{1}{2} \int dq' q'^2 \int_{-1}^{1} dx \, g(\pi_1) G_0(E; \pi_2, q') \\ g(\pi_2) P_1(x) \tau \left(E - \frac{3}{4} q'^2\right) F(q')$$

- effective two-body equation structure
- written here for three neutrons with $J^{\pi} = rac{1}{2}^+$ or $rac{3}{2}^+$ (degenerate)
 - very similar form (plus three-body force) for three bosons
- energies for which a solution exists correspond to S-matrix poles

S-matrix pole trajectories

- bound and virtual states move in the complex plane as the interaction is varied
- these trajectories can be followed by solving the equations on the second sheet

Three-body equation

• consider the Faddeev equation with separable interaction

$$\begin{array}{c} \checkmark \qquad F(q) = - \frac{1}{2} \int \mathrm{d}q' q'^2 \int_{-1}^1 \mathrm{d}x \, g(\pi_1) G_0(E; \pi_2, q') \\ g(\pi_2) P_1(x) \tau \left(E - \frac{3}{4} q'^2 \right) F(q') \end{array}$$

- effective two-body equation structure
- written here for three neutrons with $J^{\pi} = rac{1}{2}^+$ or $rac{3}{2}^+$ (degenerate)
 - very similar form (plus three-body force) for three bosons
- energies for which a solution exists correspond to S-matrix poles

Three-body equation

consider the Faddeev equation with separable interaction

$$F(q) = -rac{1}{2} \int \mathrm{d}q' q'^2 \int_{-1}^1 \mathrm{d}x \, g(\pi_1) G_0(E; \pi_2, q') \ g(\pi_2) P_1(x) au \left(E - rac{3}{4} q'^2
ight) F(q')$$

- effective two-body equation structure
- written here for three neutrons with $J^{\pi} = \frac{1}{2}^+$ or $\frac{3}{2}^+$ (degenerate)
 - ▶ very similar form (plus three-body force) for three bosons
- energies for which a solution exists correspond to S-matrix poles

Analytic continuation

- rotate the integration contour: $q \rightarrow q e^{-i\phi}$
 - this exposes lower right quadrant

Afnan, Aust. J. Phys. 44 201 (1991)

- possible to rotate back and pick up a residue
 - leads to modified effective interaction

Neutrons vs. bosons

- for three bosons we can follow the resonance trajectory of an Efimov state
 - ► consistent with previous work Bringas et al., PRA 69 040702 (2004); Deltuva, PRC 102 034003 (2020)
- for three neutrons, we can reproduce Glöckle's Yamaguchi model Glöckle, PRC 18 564 (1978)
 - \blacktriangleright generates a 3n resonance with deep 2n bound state
- no sign of a three-neutron resonance for physical nn scattering length

Dietz, SK et al., PRC 105 064002 (2022)

Finite periodic boxes

- physical system enclosed in finite volume (box)
- typically used: periodic boundary conditions
- leads to volume-dependent energies

Lüscher formalism

- physical properties encoded in the volume-dependent energy levels
- infinite-volume S-matrix governs discrete finite-volume spectrum
- finite volume used as theoretical tool

Finite-volume resonance signatures

Lüscher formalism

- finite volume ightarrow discrete energy levels $ightarrow p \cot \delta_0(p) = rac{1}{\pi L} S(E(L))
 ightarrow$ phase shift
- resonance contribution \leftrightarrow avoided level crossing

Lüscher, NPB **354** 531 (1991); ... Wiese, NPB (Proc. Suppl.) **9** 609 (1989); ...

spectrum signature carries over to few-body systems

Klos, SK et al., PRC **98** 034004 (2018)

need considerable range of volumes for such studies!

Discrete variable representation

Need calculation of several few-body energy levels

• use a Discrete Variable Representation (DVR)

well established in quantum chemistry, suggested for nuclear physics by Bulgac+Forbes, PRC 87 051301 (2013)

- periodic boundary condistions \leftrightarrow plane waves as starting point
- efficient implementation for large-scale calculations
 - handle arbitrary number of particles (and spatial dimensions)
 - ► numerical framework scales from laptop to HPC clusters Klos, SK et al., PRC 98 034004 (2018)
 - ► recent extensions: GPU acceleration, separable interactions

Dietz, SK et al., PRC 105 064002 (2022)

Benchmark calculation

Study established three-body resonance from literature

Fedorov et al., Few-Body Syst. 33 153 (2003); Blandon et al., PRA 75 042508 (2007)

- three bosons with mass m = 939.0 MeV, potential = sum of two Gaussians
- three-body resonance at
 - ▶ -5.31 i0.12 MeV (Blandon et al.)
 - ► -5.96 i0.40 MeV (Fedorov et al.) (note: potential S-wave projected!)

• fit inflection point(s) to extract resonance energy: $E_R = -5.32(1)$ MeV

Klos, SK et al., PRC 98 034004 (2018)

Three-neutron energy levels

Physical n-n scattering length $a_{nn} = -18.9 \text{ fm}$

- interacting levels with positive parity, $S_z=1/2$

- good convergence up to very large boxes \checkmark
- no sign of a three-neutron resonance

Dietz, SK et al., PRC 105 064002 (2022)

Three-neutron energy levels

Positive n-n scattering length $a_{nn} = +18.9 \text{ fm}$

- interacting levels with positive parity, $S_z=1/2$

- good convergence up to very large boxes \checkmark
- no sign of a three-neutron resonance

Dietz, SK et al., PRC 105 064002 (2022)

Three-neutron energy levels

Positive n-n scattering length $a_{nn} = +10.0 \text{ fm}$

- interacting levels with positive parity, $S_z=1/2$

- good convergence up to very large boxes \checkmark
- no sign of a three-neutron resonance

Dietz, SK et al., PRC 105 064002 (2022)

Finite-volume eigenvector continuation

- parametric dependence of Hamiltonian H(c) traces only small subspace
- this can be exploited to construct a powerful extrapolation method called eigenvector continuation
 Frame et al., PRL 121 032501 (2018)
- special case of "reduced basis method" (RBM)

Bonila et al., arXiv:2203.05282; Melendez et al., arXiv:2203.05528

- method extended to handle parametric dependence in model space directly
 - enables highly efficient volume extrapolation

Yapa+König, PRC **106** 014309 (2022)

- total number of training data: $3 \times 8 = 24$ (partly covering cubic group multiplets)
- four-neutron finite-volume resonance search enabled by FVEC!

SK et al., work in progress

Conclusion

Summary

- studied three neutrons in pionless EFT with two different methods:
 - analytic continuation of Faddeev equation
 - energy levels in periodic fininte volumes
- possible to reproduce three-boson resonances
- no indication for three-neutron resonance with large nn scattering length
 - consistent with previous work
- finite-volume eigenvector continuation enables studies of larger system

Conclusion

Summary

- studied three neutrons in pionless EFT with two different methods:
 - analytic continuation of Faddeev equation
 - energy levels in periodic fininte volumes
- possible to reproduce three-boson resonances
- no indication for three-neutron resonance with large nn scattering length
 - consistent with previous work
- finite-volume eigenvector continuation enables studies of larger system

Outlook

- four-neutron calculations in finite volume
- extension of DVR method to handle nuclear halo systems (\rightarrow Halo EFT)
- few-neutron systems as unparticles
 - ► final-state spectrum governed by conformal symmetry
 - study universal scaling exponents in point production amplitudes

Thanks...

...to my students and collaborators...

- S. Dietz, H.-W. Hammer, A. Schwenk (TU Darmstadt)
- H. Yu, N. Yapa, A. Andis, A. Taurence (NCSU)
- D. Lee (FRIB/MSU), K. Fossez (FSU)
- P. Klos, J. Lynn
- ...

... for support, funding, and computing time...

• Jülich Supercomputing Center

Thanks...

...to my students and collaborators...

- S. Dietz, H.-W. Hammer, A. Schwenk (TU Darmstadt)
- H. Yu, N. Yapa, A. Andis, A. Taurence (NCSU)
- D. Lee (FRIB/MSU), K. Fossez (FSU)
- P. Klos, J. Lynn
- ...

... for support, funding, and computing time...

• Jülich Supercomputing Center

Few-neutron point production

- assume that final-state neutrons in experiments are created effectively in a point
- possible to write down Faddeev equation for production amplitude
 - ${\ensuremath{\,{\scriptscriptstyle \bullet}}}$ same interaction kernel as shown previously in this talk
- spectrum governed by conformal symmetry in universal regime: $\frac{1}{ma^2} \ll E \ll \frac{1}{mr^2}$

Hammer+Son, Proc. Natl. Acad. Sci. 118, e2108716118 (2021)

• cross section
$$rac{{
m d}\sigma}{{
m d}E}\sim R(E)\sim E^{\Delta-5/2}$$

 \blacktriangleright scaling dimension Δ depends on partial wave: 4.666 (L=0), 4.273 (L=1), ...

Few-neutron point production

- assume that final-state neutrons in experiments are created effectively in a point
- possible to write down Faddeev equation for production amplitude
 - ${\ensuremath{\,{\scriptscriptstyle \bullet}}}$ same interaction kernel as shown previously in this talk
- spectrum governed by conformal symmetry in universal regime: $\frac{1}{ma^2} \ll E \ll \frac{1}{mr^2}$

Hammer+Son, Proc. Natl. Acad. Sci. 118, e2108716118 (2021)

• cross section
$$rac{{
m d}\sigma}{{
m d}E}\sim R(E)\sim E^{\Delta-5/2}$$

 \blacktriangleright scaling dimension Δ depends on partial wave: 4.666 (L=0), 4.273 (L=1), ...

