PHOTONS AS MESSENGERS OF THE NON-EQUILIBRIUM QUARK-GLUON PLASMA

Oscar Garcia-Montero
Fakultät für Physik
Universität Bielefeld
GARCIA@PHYSIK.UNI-BIELEFELD.DE
CONTENTS

- Photons and non-eq. effects
 - Early stages (Pre-eq)
 - Falling out of eq.: Hadronic Rescattering
- Photon Correlations
- Summary
MOTIVATION

- Heavy-Ion Collisions create an Isolated Quantum System which is
 - Initially far away from any equilibrium
 - Self-interacting
 - Expanding against the vacuum

A system battling to thermalize against all odds.
CAN WE PROBE THE ROLE OF Non-Eq DYNAMICS?
The Standard Model of Heavy Ion Collisions: A Hybrid Model

THE STANDARD MODEL OF HEAVY ION COLLISIONS: A HYBRID MODEL

HADRON GAS
SMASH
UrQMD

PRE-EQUILIBRIUM
AMY EKT
KøMPøST

QGP
VISH
MUSIC
vHLLE

Hadron Gas
Quark Gluon plasma

SYSTEM LOSES MEMORY!!

Anisotropy: P_L/P_T

$\alpha_s = 0$
$\alpha_s = 0.03$
$\alpha_s = 0.15$
$\alpha_s = 0.3$

Classical YM
Bottom-Up
Realistic coupling

SMASH
UrQMD

IP-Glasma

TRENTO

INITIAL CONDITIONS

THE STANDARD MODEL OF HEAVY ION COLLISIONS: A HYBRID MODEL

HADRON GAS
SMASH
UrQMD

PRE-EQUILIBRIUM
AMY EKT
KoMPoST

\[\text{Hadamard Gas} \]

\[\text{Quark Gluon Plasma} \]

\[\text{System Loses Memory!!} \]

\[\text{10} \]
\[\text{100} \]
\[\text{1000} \]

Rescaled occupancy: \(\frac{\alpha_s f}{\rho} \)

Anisotropy: \(\frac{P_T}{P_L} \)

\[\alpha_s = 0 \]
\[\alpha_s = 0.03 \]
\[\alpha_s = 0.15 \]
\[\alpha_s = 0.3 \]

Classical YM

Bottom-Up

Realistic

QCD

Initial Conditions

\[1 \]

\[3 \]

WHAT CAN WE USE TO PROBE THE ROLE OF Non-Eq DYNAMICS?
ELECTROMAGNETIC PROBES

- TBU: Photons and dilepton pairs
- No strong interactions
- Mean free path in medium > medium size
 - Photons escape, virtually unscathed

AS A CONSEQUENCE...

- Different sources through the evolution
- EMPs are particularly sensitive to the evolution of the system
- Direct Photons* are not produced in decays

Photons* = virtual photons, i.e. dilepton pairs also included in this notation
ELECTROMAGNETIC PROBES

- Photons* are not produced in decays
- No strong interactions
- Mean free path in medium > medium size
- Photons escape, virtually unscathed

AS A CONSEQUENCE...

- Different sources through the evolution
- EMPs are particularly sensitive to the evolution of the system

Direct Photons* are not produced in decays

Photons* = virtual photons, i.e. dilepton pairs also included in this notation
HOWEVER, EM probes are yet to be fully understood.

DIRECT PHOTON PUZZLE

"The inability to simultaneously describe both the photon yield and anisotropy."

\[
E \frac{dN}{d^3p} = \frac{1}{2\pi p_{\perp} \, dp_{\perp} \, dy} \left[1 + \sum_{n=1}^{\infty} v_n(p_{\perp}) \cos [n(\phi - \Psi_n)] \right]
\]

DIRECT EM PROBES

HOWEVER, electromagnetic probes are complicated

Since the yield is given by

\[E \frac{dN}{d^3p} = \int_0^\infty E \frac{dN}{drd^3p} = \sum_i \int_{\tau_i}^{\tau_{i+1}} E \frac{dN_i}{drd^3p} \]

This entangles the yields originating in different stages

And the \(v_n \) even more (as it is a weighted avg.)

HOW TO DISENTANGLE A LONG EXPOSURE PICTURE?

Correlations.

We’ll come back to this.
Recent advances in...

PHOTONS AS MESSENGERS OF EARLIER TIMES
EARLY RADIATION: IS IT RELEVANT?

- Pre-equilibrium photons are computed using approximated 2-to-2 kinetic rates
 \[
 E \frac{d^3 R}{d^3 p} = \frac{40}{9 \pi^2} \alpha_s \mathcal{L} f_q(p) \int \frac{d^3 p'}{(2\pi)^3} \frac{1}{p'} \left[f_s(p') + f_q(p') \right]
 \]

- Space-time evolution to fold the rates with. Use the "bottom-up" thermalization scenario:
 1. Early times: 2-to-2 broadening \(1 \ll \tau_Q \ll \alpha_s^{-3/2} \)
 2. Onset of thermalization: \(\alpha_s^{-3/2} \ll \tau_Q \ll \alpha_s^{-5/2} \)
 3. Mini-jet quenching \(\alpha_s^{-5/2} \ll \tau_Q \ll \alpha_s^{-13/5} \)

- Input: Gluon distributions from classical statistics
 Pheno. matching for the free parameters, i.e. \(Q_s \)

Caveat: pure "bottom-up" gives a long pre-equilibrium stage. These should be taken as largest
REFINEMENT: KINETIC THEORY

Pre-equilibrium photons are computed using approximated 2-to-2 kinetic rates

\[E \frac{d^3R}{d^3p} = \frac{40}{9\pi^2}\alpha_s \mathcal{L} \int \frac{d^3p'}{(2\pi)^3} \frac{1}{p'} [f_g(p') + f_q(p')] \]

Distributions are computed in QCD Kinetic theory, using the Fokker-Planck diffusion approximation

\[\left(\frac{\partial}{\partial t} + v \cdot \nabla_x \right) f_{g/q}(t, x, p) = -\nabla_p \cdot \mathcal{J}_{g/q} + S_{g/q} \]

ICs: \(f_g(t_0, p) = f_0 \theta \left(1 - \frac{\sqrt{p_x^2 + p_z^2} \xi^2}{Q_s} \right) \) and \(f_q(t_0, x, p) = 0 \)

Pheno. matching to energy (multiplicities)

\[\frac{dE}{d\eta} = 2N_c C_F A_T \frac{f_0 Q_s^3}{(2\pi)^3} \frac{1}{\xi} \mathcal{F}(\xi) \]

Gluon number suppressed by large \(Q_s \) Pre-eq. Photons relevant at lower energies.
DI-LEPTON PRODUCTION IN HICS

- Di-lepton ($e^+e^-/\mu^+\mu^-$) pairs with invariant mass $M \sim \text{few GeVs}$ produced during the initial state; late stage production is suppressed by $\exp(-M/T)$

- Do pre-equilibrium dileptons “out-shine” the Drell-Yann, decay spectra?
 - For some kinematic windows, it may be the case.

- New window into pre-equilibrium dynamics for $1\text{GeV} < M < 3\text{GeV}$ accessible with next generation of heavy-ion detectors (ALICE3, LHCb)
Falling out of equilibrium

RESCATTERING DURING THE HADRONIC STAGE
NEQ EFFECTS IN THE HADRONIC STAGE

- Hadronic observables are sensitive to end (hadronic) non-equilibrium effects. Are the photons produced also sensitive?

ICs

\(T_{\text{RENTO}} \)

(3+1) MUSIC IDEAL HYDRO

QGP

AFTERBURNER

SMASH

MODEL A:

THERMAL PHOTONS
\[T > 150 \text{ MeV} \]

AFTERBURNER [microscopic] PHOTONS

MODEL B:

THERMAL PHOTONS
\[T > 150 \text{ MeV} \] + THERMAL PHOTONS
\[150 > T > 120 \text{ MeV} \]

PHOTONS FROM HADRONIC RESCATTERING

Main contributions

\[\pi \pi \pi \pi \]

Hydrodynamical - Thermal Rates

- Rates obtained from convolution of process amplitude and thermal distribution functions

QGP: AMY, JHEP 0112 (2001) 009

Transport - SMASH photons

- Non-equilibrium production of photons in hadronic matter
- Perturbative production - no backreaction
- Photons are sampled when underlying meson scattering happens

Computed yield and anisotropy of photons

Checked hadronic observables

EQUILIBRIUM VS NON-EQUILIBRIUM

SOME TECHNICAL DETAILS

Average (smooth) ICs for $b = 5$ fm

Transition Temperature $T = 150$

- Checked hadronic observables
- Comparison: Model A vs. Model B
- Computed yield and anisotropy of photons
 \[v_2(p_\perp) = \frac{\langle p_\perp^2 - p_\parallel^2 \rangle}{\langle p_\perp^2 \rangle} \]
- Photon anisotropies are measured relative to the hadronic event plane

NON-EQUILIBRIUM EFFECTS ENHANCE PHOTON ANISOTROPIES
QGP VS. HADRONIC MATTER

HADRONIC STAGE IS RELEVANT! NON-EQ. EFFECTS SHOULD BE ACCOUNTED FOR.
Extracting the Information: FEMTOSCOPY
- Originally used to measure the size of astronomical light sources
 i.e. Cassiopeia A and Cygnus A

- How? $\delta x \delta p \gg 2\pi \hbar$ Photons behave classically
 $\delta x \delta p \lesssim 2\pi \hbar$ Photons behave quantum

- Quantum effects start at
 $$\delta x_{\text{max}} \sim 2R$$
 $$q^* = \frac{\pi \hbar}{R}$$

- Pair variables
 $$K^\mu = (K^0, K_1, 0, K^z)$$
 $$q^{\mu} = (q^0, q_0, q_s, q_l)$$
A tale of two sources

Far-from-equilibrium Photons
- Bottom-up—like evolution + matching
- Pre-equilibrium photons are computed using kinetic rates, Phys. Rev. C69 (2004) 014903
- Pre-equilibrium photons are computed using kinetic rates, OGM. Ann. Phys. 443 (2022) 168984

\[E \frac{dN}{d^4X d^3p} = \frac{40}{9\pi^2} \alpha s L f_\pi(p) (l_\pi + l_q) \]

Pseudo-Critical Enhancement
- Phenomenological model.

\[E \frac{dN_{\text{enh}}}{d^4X d^3p} \equiv h(T) E \frac{dN_{\text{thermal}}}{d^4X d^3p} \quad \text{and} \]

\[h(T) = 1 + h_0 \exp \left\{ -\frac{(T - T_{pc})^2}{c^2} \right\} \]
A tale of two sources

Far-from-equilibrium Photons

- Bottom-up–like evolution + matching
- Pre-equilibrium photons are computed using kinetic rates , Phys.Rev. C95 (2017) no.5, 054904
OGM. Annals Phys. 443 (2022) 168984

\[E \frac{dN}{d^4Xd^3p} = \frac{40}{9\pi^2} \alpha \alpha s \mathcal{L} f_q(p) (l_g + l_q) \]

Pseudo-Critical Enhancement

- Phenomenological model.
- At hadronization, non-perturbative rise in partonic cross-sections (Nucl. Phys. A933, 256 (2015))

\[E \frac{dN_{enh}}{d^4Xd^3p} \equiv h(T) E \frac{dN_{thermal}}{d^4Xd^3p} \quad \text{and} \]

\[h(T) = 1 + h_0 \exp \left\{ -\frac{(T - T_{pc})^2}{\sigma^2} \right\} \]

*JHEP 12, 009 (2001)
The HBT-Radii

\[\langle q_i q_j \rangle = \int d^3 q q_i q_j g(q; K) \equiv \frac{1}{2} (R^{-1})_{ij} \]

\[g(q; K) \equiv \frac{C(q, K) - 1}{\int d^3 q [C(q, K) - 1]} \]

Longitudinal direction affected the most by the inclusion of the sources.

Early-times production reduces effective radii, while late times increase it.

Are these differences enough to measure it?
SUMMARY

- Electromagnetic probes produced throughout space-time evolution of HICs; escape collision unscathed as they do not interact strongly with the QGP

- EM probes are carry sensitive information about the initial and early stages, which we can use to learn about the early evolution of the medium

- Late time non-equilibrium effects are significant for anisotropy generation

- Non-trivial to resolve the discrepancies in the photon observables

- Photon HBT can be the tool we use to cross-compare different models of photon production