Experimental study of \overline{KNN} and future \overline{K} -nuclei experiments at J-PARC

Takumi Yamaga (RIKEN) for the J-PARC E15 collaboration

QNP2022 (2022.9.5 – 9.9)

$$I_{\bar{K}N} = 0 \quad \frac{1}{\sqrt{2}} \left(-K^{-}p + \bar{K}^{0}n \right) \quad \begin{array}{l} \text{Strong} \\ \text{attractive} \end{array}$$

$$I_{\bar{K}N} = 1 \quad \frac{\bar{K}^{0}p}{\frac{1}{\sqrt{2}} \left(K^{-}p + \bar{K}^{0}n\right)} \quad \text{attractive}$$

KN interaction

Possible to make quasi-bound states with $I_{\bar{K}N} = 0$

The lightest \bar{K} -nucleus

$$(\bar{K}[NN]^{I=0})^{I=1/2}$$

$$J^{\pi} = 1^{-}$$

$$-\sqrt{\frac{1}{4}}[\bar{K}N]^{I=0}N + \sqrt{\frac{3}{4}}[\bar{K}N]^{I=1}N$$

$$(\bar{K}[NN]^{I=1})^{I=1/2}$$

$$J^{\pi} = 0^{-}$$

$$\sqrt{\frac{3}{4}}[\bar{K}N]^{I=0}N + \sqrt{\frac{1}{4}}[\bar{K}N]^{I=1}N$$

$$(\bar{K}[NN]^{I=1})^{I=1/2}$$

$$[\bar{K}N]^{I=1}N$$

Should be the ground state

$$I_z = + 1/2$$

To select Λpn final state To measure Λp invariant-mass & momentum transfer

J-PARC E15

Obtained 2D distribution

Model functions

Fit result

Whole distributions are well reproduced.

40

quasi-free

20

80

broad hat we observed

The peak position does not depend on q.

$0.3 < q_x \leq 96$ field be resonance.

data

QF-K absorption total cess is clearly observed.

Intermediate K exist during the reaction. $\underbrace{KNN \rightarrow \Sigma^{0} p}{KNN \rightarrow \Sigma^{0} p}$

The peak position is below the $M_{\bar{K}NN}$. \rightarrow We interpreted it as \overline{KNN} signal.

 $BE = 42 \pm 3$ (stat.) $^{+3}_{-4}$ (syst.) MeV

 $\Gamma \cong 100 \pm 7 \text{ (stats)} + 19 \text{ (syst.) MeV}$ > 0.9 GeV/c obtained as peak position & width of simple Breit-Wigner

Compare to theoretical calculation

Theoretical calculation supports that the observed peak is KNN signal.

T. Sekihara, E. Oset, and A. Ramos, JPSCP 26 (2019) 023009 $m_{\bar{K}} + 2m_N$ Theory (A) Theory (B) Exp. (all - BG)**Calculated spectra** E15 data 2.35 2.4 2.45 2.55 2.5 26 $M_{\Lambda p}$ [GeV]

Remaining questions

Is the observed resonance really what we expected?

Other possibilities such as Σ^*N ?

Does \overline{K} really keep it particle identity?

We need further systematic measurements to answer the questions & to robustly confirm \bar{K} -nuclei.

Precise study for $\bar{K}NN$

Search for heavier \bar{K} -nuclei

Ongoing analysis for K-nuclei

Future experiments

Conceptual design of new CDS

>90% solid angle coverage

Neutron detection capability

Sensitivity for proton polarization

Construction has been started (Completed in 2025)

Programs for *K*-nuclei

*Ē***NN system**

J^{π} determination

- To confirm the existence more robustly
- Measuring $d\sigma/dq$ & $\alpha_{\Lambda p}$
- Search for $(\bar{K}NN)^{I_z=-1/2}$
- Isospin partner of observed $\bar{K}NN$
 - $\bar{K}NN \rightarrow \Lambda n$ decay

Decay branch

Mesonic $\pi\Lambda N, \pi\Sigma N$

Heavier system

 $\bar{K}NNN$ system Door to heavier system ${}^{4}\text{He}(K^{-}, N)$ reaction $K^{-}ppn - \bar{K}^{0}pnn$ (I=0)

 $\bar{K}NNNN$ systemExpected large B.E. & high density $^{6}Li(K^{-}, d)$ reaction $K^{-}-\alpha$ $\bar{K}^{0}-\alpha$

Determination of J^{π} for $\bar{K}NN$

Internal configuration & J^{π}

Possible internal configurations have different J^{π} .

How to determine J^P

$$(\bar{K}[NN]^{I=0})^{I=1/2}$$

$$J^{\pi} = 1^{-}$$

$$[L_{\Lambda p} = 1]$$

$$[L_{\Lambda p} = 1] + \frac{1}{3}[S_{\Lambda p} = 0]$$

$$\swarrow$$

$$\alpha_{\Lambda p} = + 1/3$$

$$(\bar{K}[N] = 1)$$

$$(\bar{K}[N] = 1)$$

$$[L_{\Lambda p} = 1] + \frac{1}{3}[S_{\Lambda p} = 0]$$

$$[S_{\Lambda p} = 1] + \frac{1}{3}[S_{\Lambda p} = 0]$$

$$\alpha_{\Lambda p} = + 1/3$$

$$(\Sigma^*N)^{I=1/2}$$
$$J^{\pi} = 2^+$$
$$[L_{\Lambda p} = 2]$$
$$\frac{\otimes}{1} \frac{1}{2} [S_{\Lambda p} = 1] + \frac{1}{2} [S_{\Lambda p} =$$
$$\bigvee_{\alpha_{\Lambda p}} = \pm 0$$

Three different internal configurations can be distinguished by $\alpha_{\Lambda p}$.

Measurement of $\alpha_{\Lambda D}$

by *p*-C scat. asym.

– Spin alignment measurement by $\Lambda \rightarrow p\pi^- \& p$ -C scattering –

Spin-spin correlation on ϕ -asymmetry $N(\phi_{\Lambda p}) = N_0 \cdot (1 + r^{(J^P)} \cdot \alpha_{\Lambda p} \cos \phi_{\Lambda p})$ $r^{(J^P)}$: asymmetry reduction factor defined by; $\alpha_{-}: \Lambda$ asym. parameter B: Magnetic field A_{pC} : Analyzing power $B_{\bar{K}}$: Binding energy

 $f_{\overrightarrow{S}_{\Lambda}}$: Spin distribution

q : Momentum transfer

 $\phi_{\Lambda p}$ measurement has a sensitivity to distinguish J^{π} .

We would like to robustly confirm the existence of \overline{K} -nuclei X clarify their internal structure

Are you interested in? Join us!

Thank you for your attention!

= Collaboration =

T. Hashimoto, K. Tanida

Theorists	
Tokyo Tech D. Jido	
T. Sekihara	