Recent #EFT studies of Λ and $\Lambda\Lambda$ few-body hypernuclei

Martin Schäfer

Racah Institute of Physics, The Hebrew University, Jerusalem, Israel

The 9th International Conference on Quarks and Nuclear Physics (online)

8th September 2022

Why few-body hypernuclei ?

Interactions of hadrons :

- currently described by QCD
- At low and intermediate energies ...

QCD is notoriously difficult to solve in this energy regime !
 → lattice QCD and effective field theories (EFTs)

 Observed properties of few-body
 Precise few-body
 Underlying interaction

 few-body hypernuclei
 \leftarrow
 methods
 \leftarrow

Hypernuclei

Where do we stand ?

- experimentaly observed more than 30 Λ-hypernuclei
- three well-established ΛΛ-hypernuclei
- scarce ΛN and no $\Lambda\Lambda$ scattering data

 \rightarrow difficult to fix parameters of interaction models, many parameters and few data points \rightarrow large uncertainties

What do we do ?

 \rightarrow we build low-energy EFT without π (#EFT) employing both scattering lengths and *s*-shell hypernuclear data (3-body *NNN*, *NNN*, and *NNN* interaction)

#EFT

Hyper(nuclear) #EFT

Hamiltonian :

$$\begin{aligned} H_{\lambda}^{(\mathrm{LO})} &= T_{\mathrm{k}} + V_{2} + V_{3} \\ V_{2} &= \sum_{l,S} C_{\lambda}^{l,S} \sum_{i < j} \mathcal{P}_{ij}^{l,S} \delta_{\lambda}(\mathbf{r}_{ij}) \\ V_{3} &= \sum_{l,S,\alpha} D_{\lambda,\alpha}^{l,S} \sum_{i < j < k} \mathcal{Q}_{ijk}^{l,S,\alpha} \sum_{\mathrm{cyc}} \delta_{\lambda}(\mathbf{r}_{ij}) \delta_{\lambda}(\mathbf{r}_{jk}) \end{aligned}$$

 \rightarrow prediction of Ann, AAn, AAnn, ${}^{3}_{\Lambda}H^{*}$, ${}^{5}_{\Lambda}He$, ${}^{4}_{\Lambda\Lambda}H$, ${}^{5}_{\Lambda\Lambda}H$, ${}^{5}_{\Lambda\Lambda}He$

YN scattering data

- cross-section datapoints for $p_{
 m lab}\gtrsim 100$ MeV
 - 12 d.p. for $\Lambda + p \rightarrow \Lambda + p$
 - 22 d.p. for $\Sigma^- + p \rightarrow \Lambda + n$, $\Sigma^+ + p \rightarrow \Sigma^+ + p$, $\Sigma^- + p \rightarrow \Sigma^- + p$, and $\Sigma^- + p \rightarrow \Sigma^0 + n$
- no information regarding spin-depence

- Alexander et al. (PR173, 1452, 1968) $a_{\Lambda N}({}^{1}S_{0}) = -1.8 \text{ fm}$ $a_{\Lambda N}({}^{3}S_{1}) = -1.6 \text{ fm}$
- Sechi-Zorn et al. (PR175, 1735, 1968) $0 > a_{\Lambda N}({}^{1}S_{0}) > -9.0 \text{ fm}$ $-0.8 > a_{\Lambda N}({}^{3}S_{1}) > -3.2 \text{ fm}$

Fig. 9. Mapping of the likelihood function L in the a_r - a_r plane for the four-parameter fit. The shaded area includes all points with likelihood values above $L_{max}(\exp 0.5)$ where L_{max} is the value of the best fit (point f). The external smooth curve encloses likelihood values bying above $L_{max}(\exp 0.5)$. Points 1–5 represent scattering lengths derived from early hypernuclei calculations.

ΛN and $\Lambda\Lambda$ scattering

ΛN and $\Lambda\Lambda$ scattering lengths

AN scattering lengths (Rev. Mod. Phys. 88, 035004, 2016)

	$a_{\Lambda N}({}^1S_0)$ [fm]	$a_{\Lambda N}({}^3S_1)$ [fm]
NSC89	-2.79	-1.36
NSC97e	-2.17	-1.84
NSC97f	-2.60	-1.71
ESC08c	-2.54	-1.72
Jülich '04	-2.56	-1.66
$\chi EFT(LO)$	-1.91	-1.23
$\chi \text{EFT}(\text{NLO})$	-2.91	-1.54
Alexander	-1.80	-1.60

ΛΛ scattering length

	$a_{\Lambda\Lambda}({}^1S_0)$ [fm]	
$^{-12}C(K^-,K^+)\Lambda\Lambda X$	-1.2(6)	(Phys. Rev. C 85, 015204, 2012)
HAL QCD	-0.81 $\pm 0.23^{+0.00}_{-0.13}$	(Nucl. Phys. A 998, 121737, 2020)
χ EFT(LO; 600)	-1.52	(Phys. Lett. B 653, 29, 2007)
χ EFT(NLO; 600)	-0.66	(Nucl. Phys. A 954, 273, 2016)
ΛΛ correlations; STAR	$-0.79^{+0.29}_{-1.13}$	(Phys. Rev. C 91, 024916, 2016)
		(Phys. Rev. Lett. 114, 022301, 2015)

Outline

Outline of this talk

Nature of the $\Lambda nn (J^{\pi} = 1/2^+, I = 1)$ and ${}^{3}_{\Lambda}H^* (J^{\pi} = 3/2^+, I = 0)$ states M. Schäfer, B. Bazak, N. Barnea, and J. Mareš (Phys. Lett. B 808, 135614, 2020; Phys. Rev. C 103, 025204, 2021)

The onset of ΛΛ **hypernuclear binding** L. Contessi, M. Schäfer, N. Barnea, A. Gal, and J. Mareš (Phys. Lett. B 797, 134893, 2019)

In-medium A isospin impurity from charge symmetry breaking in the ${}^{4}_{\Lambda}H - {}^{4}_{\Lambda}He$ mirror hypernuclei M. Schäfer, N. Barnea, and A. Gal (arXiv:2202.07460 [nucl-th], accepted in Phys. Rev. C letters, 2022)

Hypernucler trios $^3_{\Lambda}H$, $^3_{\Lambda}H^*$, Λnn - physical motivation

$^3_{\Lambda}\mathrm{H}(1/2^+)$

- lightest bound hypernucleus
- currently no experimental consensus on its B_{Λ}
- constraint in ΛN interaction models

$^3_{\Lambda}\mathrm{H}^*(3/2^+)$

- no experimental evidence
- strict constraint on $\Lambda N S = 1$ interaction
- JLab C12-19-002 proposal

$\Lambda nn(1/2^+)$

- experiment (HypHI)
- JLab E12-17-003 experiment
- valuable source of Λn interaction
- structure of neutron-rich Λ-hypernuclei

Λnn and $^3_\Lambda H^*$ - early work

- R. H. Dalitz, B. W. Downs (PR110, 958, 1958; PR111, 967, 1958; PR114, 593, 1959) \rightarrow first calculation, variational approach, unbound Ann
- H. Garcilazo (J. Phys. G: Nucl. Phys. 13, 63, 1987)
 → Faddeev equations, separable potentials, unbound Λnn
- K. Miyagawa et al. (PRC51, 2905, 1995)
 → Faddeev equations, realistic Nijmegen interaction, unbound Λnn and ³_ΛH^{*}
- H. Garcilazo et al. (PRC75, 034002, 2007; PRC76, 034001, 2007)
 - \rightarrow Faddeev equations, Chiral Quark Model (NA N Σ coupling, tensor force)
 - \rightarrow unbound Λnn
 - \rightarrow constraints on $a_{\Lambda N}^{S=0}$, $a_{\Lambda N}^{S=1}$ from $^3_{\Lambda}{\rm H}$, unbound $^3_{\Lambda}{\rm H}^*$, and Λp data

• V. B. Belyaev et al. (NPA803, 210, 2008)

- \rightarrow first resonance calculation, 3-body Jost function, phenomenological potential
- $\rightarrow \Lambda nn$ pole just above/below the threshold, large widths

Λnn and $^3_\Lambda H^*$ - current status

- HypHI Collaboration (PRC88, 041001(R), 2013) \rightarrow suggestion of bound Ann, $^{6}\text{Li} + ^{12}\text{C}$ @ 2A GeV
- E. Hiyama et al. (PRC89, 061302(R), 2014)
 - \rightarrow YN model equivalent to NSC97f; changing $^{3}V_{N\Lambda-N\Sigma}^{T}$, $^{0}V_{NN}$ to bind Λnn
 - \rightarrow nonexistence of bound Ann ($^{3}_{\Lambda}$ H, $^{3}_{\Lambda}$ H^{*}, $^{4}_{\Lambda}$ H, 3 H)

• A. Gal, H. Garcilazo (PLB736, 93, 2014)

- \rightarrow Faddeev equations, separable potentials
- \rightarrow nonexistence of bound $\Lambda nn (\sigma_{\Lambda p}, {}^{3}_{\Lambda}H, and {}^{4}_{\Lambda}H exc. energy)$
- I. R. Afnan, B. F. Gibson (PRC92, 054608, 2015)
 - \rightarrow Faddeev equations, Λnn resonance calculations, separable potentials
 - \rightarrow subthreshold (non-physical) Ann resonance

• JLab E12-17-003 Experiment (PTEP92 2022, 013D01, 2022)

- \rightarrow ³H(e, e'K⁺) Λ nn
- \rightarrow No significant structures observed

Results

 $\Lambda nn \text{ and } {}^3_{\Lambda} H^*$ systems

Implications of just bound Λnn and ${}^{3}_{\Lambda}H^{*}$ ($\lambda = 6 \ {\rm fm}^{-1}$)

 B_Λ(³_ΛH) is used to fix three-body force in I, S = 0, 1/2 channel and remains unaffected Results Λnn and ${}^{3}_{\Lambda}H^{*}$ systems

Ann system and ${}^3_{\Lambda}\mathrm{H}^*(J^{\pi}=3/2^+)$ excited state

 $\label{eq:large} \begin{array}{l} {\rm Ann} \mbox{ predicted as a near-threshold resonance} \\ \rightarrow \mbox{ large width } 1.16 \leq \Gamma \leq 2.00 \mbox{ MeV} \end{array}$

 $^{3}_{\Lambda}$ H^{*} obtained as a near-threshold virtual state \rightarrow enhanced *s*-wave Λ + 2 H phaseshifts in J^{π} = 3/2⁺ channel

The onset of $\Lambda\Lambda$ hypernuclear binding

Results

Decisive role of 3-body ΛNN and $\Lambda\Lambda N$ forces

 \rightarrow neutral $\Lambda\Lambda n$ and $\Lambda\Lambda nn$ systems far from being bound

 $\to {}^4_{\Lambda\Lambda}{\rm H}$ on the verge of binding (bound for $\Lambda\Lambda$ strength equivalent to ΛN)

 \rightarrow robust binding for $^{5}_{\Lambda\Lambda}$ H hypernucleus $B_{\Lambda}(^{5}_{\Lambda\Lambda}$ H; $\infty)=1.14\pm0.01^{+0.44}_{-0.26}$ MeV

Charge symmetry breaking in $^4_{\Lambda}{\rm H}/^4_{\Lambda}{\rm He}$

• $B_{\Lambda}(^{4}_{\Lambda}\text{H}; 0^{+})$ measurement at MAMI (Nucl. Phys. A, 954, 149, 2016) $^{3}H + \Lambda$ $^{3}\text{He} + \Lambda$ 1.067±0.08 • $B_{\Lambda}(^{4}_{\Lambda}\text{He}; 0^{+})$ measurement (emulsion) (Nucl. Phys. A 754, 3c, 2005) 1.09 ± 0.02 0^{+} 2.157 ± 0.077 239+00• $E_{\gamma}(^{4}_{\Lambda}\text{H}; 1^{+} \rightarrow 0^{+}), E_{\gamma}(^{4}_{\Lambda}\text{He}; 1^{+} \rightarrow 0^{+})$ $^{4}_{\Lambda}H$ ⁴₄He γ -ray energies (J-PARC) (Phys. Rev. Lett., 115, 222501, 2015) B_{Λ} (MeV)

Sizable CSB splitting in 0^+ ground states, while small in 1^+ excited states.

Theoretical works

• **R. H. Dalitz and F. von Hippel** (Phys. Lett. 10, 153, 1964) \rightarrow CSB OPE contribution by allowing $\Lambda - \Sigma^0$ mixing in SU(3)_f

$$g_{\Lambda\Lambda\pi} = 2\mathcal{A}_{I=1}^{(0)}g_{\Lambda\Sigma\pi}; \quad \mathcal{A}_{I=1}^{(0)} = -\frac{\left<\Sigma^{0}\right|\delta M \left|\Lambda\right>}{M_{\Sigma^{0}} - M_{\Lambda}} = -0.0148(6)$$

• A. Gal (Phys. Let. B 744, 352, 2015)

$$\rightarrow$$
 generalization of DvH
 $\langle N\Lambda | V_{\Lambda N}^{CSB} | N\Lambda \rangle = -\frac{2}{\sqrt{3}} \mathcal{A}_{l=1}^{(0)} \tau_{N_z} \langle N\Lambda | V | N\Sigma \rangle$
 $\rightarrow \Delta B_{\Lambda}(0_{\text{g.s.}}^+) \approx 240 \text{ keV} \qquad \Delta B_{\Lambda}(1_{\text{exc.}}^+) \approx 35 \text{ keV}$

• **D. Gazda and A. Gal** (PPRL116, 122501, 2016; NPA 954, 161, 2016) \rightarrow generalized DvH; LO χ EFT *YN* interaction; NSCM

 $ightarrow \Delta B_{\Lambda}(0^+_{
m g.s.}) pprox 180 \pm 130 \; {
m keV} \qquad \Delta B_{\Lambda}(1^+_{
m exc.}) pprox -200 \pm 30 \; {
m keV}$

• J. Haidenbauer et al. (Few-Body Syst. 62, 105, 2021) \rightarrow talk of Hoai Le

Hypernuclear CSB within #EFT

Charge Symmetric (CS) LO #EFT

Nuclear :

Hypernuclear :

$$\begin{split} V_{NN} &= \sum_{S} C_{NN}^{S}(\lambda) \mathcal{P}^{S} e^{-\frac{\lambda^{2}}{4} r_{12}^{2}} & V_{\Lambda N} = \sum_{S} C_{\Lambda N}^{S}(\lambda) \mathcal{P}^{S} e^{-\frac{\lambda^{2}}{4} r_{12}^{2}} \\ V_{NNN} &= D_{\lambda}^{1/2} {}^{1/2} \mathcal{Q}^{1/2} {}^{1/2} \sum_{\text{cyc}} e^{-\frac{\lambda^{2}}{4} (r_{12}^{2} + r_{23}^{2})} & V_{\Lambda NN} = \sum_{IS} D_{\Lambda NN}^{IS}(\lambda) \mathcal{Q}^{IS} \sum_{\text{cyc}} e^{-\frac{\lambda^{2}}{4} (r_{12}^{2} + r_{23}^{2})} \end{split}$$

CSB in ΛN interaction

$$C^{S}_{\Lambda N} \mathcal{P}^{S} \to (C^{S}_{\Lambda p} \frac{1 + \tau_{Nz}}{2} + C^{S}_{\Lambda n} \frac{1 - \tau_{Nz}}{2}) \mathcal{P}^{S}$$
$$C^{S}_{\Lambda N} = \frac{1}{2} (C^{S}_{\Lambda p} + C^{S}_{\Lambda n}), \qquad \delta C^{S}_{\Lambda N} = \frac{1}{2} (C^{S}_{\Lambda p} - C^{S}_{\Lambda n})$$

$$V_{\Lambda N} = \sum_{S}^{\text{part of LO CS } \neq \text{EFT}} \sum_{S}^{\text{perturbative CSB}} \delta C_{\Lambda N}^{S}(\lambda) \mathcal{P}^{S} e^{-\frac{\lambda^{2}}{4}r_{12}^{2}} + \sum_{S}^{S} \delta C_{\Lambda N}^{S}(\lambda) \mathcal{P}^{S} \tau_{N_{z}} e^{-\frac{\lambda^{2}}{4}r_{12}^{2}}$$

Fitting CSB LECs

- $\rightarrow \text{ perturbatively}$
- \rightarrow two experimental constraints

 $\Delta B_{\Lambda}(0^{+}_{\rm g.s.}) = 233 \pm 92 \text{ keV}$ $\Delta B_{\Lambda}(1^{+}_{\rm exc.}) = -83 \pm 94 \text{ keV}$

System of two linear equation for $\delta C_{\Lambda N}^0$ and $\delta C_{\Lambda N}^1$:

$$2 \ \delta C^0_{\Lambda N} \ \Delta V^0_{\Lambda N; 0^+} + 2 \ \delta C^1_{\Lambda N} \ \Delta V^1_{\Lambda N; 0^+} = \Delta B_{\Lambda}(0^+_{\mathrm{g.s.}})$$
$$2 \ \delta C^0_{\Lambda N} \ \Delta V^0_{\Lambda N; 1^+} + 2 \ \delta C^1_{\Lambda N} \ \Delta V^1_{\Lambda N; 1^+} = \Delta B_{\Lambda}(1^+_{\mathrm{exc.}})$$

where

$$\Delta V^{S}_{\Lambda N; J^{\pi}} = \frac{\langle ^{4}_{\Lambda} \mathrm{H}; J^{\pi} | \tau_{Nz} \mathcal{P}_{S} \delta_{\lambda} (_{\Lambda N}) | ^{4}_{\Lambda} \mathrm{H}; J^{\pi} \rangle}{\mathrm{CS \ LO \ }^{4} \mathrm{EFT \ wave \ function}}$$

In-medium Λ isospin impurity

DvH ansatz : (A. Gal, Phys. Lett. B 744, 352, 2015)

$$\langle \Lambda N | V_{\rm CSB} | \Lambda N \rangle = -\frac{2}{\sqrt{3}} \mathcal{A}_{I=1}^{(0)} \langle \Sigma N | V_{\rm CS} | \Lambda N \rangle \tau_{Nz}$$

$$\downarrow$$

$$\delta C_{\Lambda N}^{S} = -\frac{2}{\sqrt{3}} \mathcal{A}_{I=1}^{S} C_{\Lambda N;\Sigma N}^{S}$$

SU(3)_f symmetry:

(C.B. Dover, H. Feshbach, Ann. Phys. (NY) 198, 321, 1990)

$$\begin{array}{c} C^{0}_{\Lambda N,\Sigma N} = -3(C^{0}_{\Lambda N} - C^{0}_{\Lambda N}) \\ C^{1}_{\Lambda N,\Sigma N} = (C^{1}_{\Lambda N} - C^{1}_{\Lambda N}) \end{array} \right\} \qquad \longrightarrow \qquad \begin{array}{c} -\mathcal{A}^{0}_{I=1} = (\sqrt{3}/2)\delta C^{0}_{\Lambda N}/[-3(C^{0}_{\Lambda N} - C^{0}_{\Lambda N})] \\ -\mathcal{A}^{1}_{I=1} = (\sqrt{3}/2)\delta C^{1}_{\Lambda N}/[(C^{1}_{\Lambda N} - C^{1}_{\Lambda N})] \end{array}$$

In-medium Λ isospin impurity

ightarrow considering more precise $\Delta E_{\gamma}=$ 316 \pm 20 keV

Relation between CSB LECs and ΔE_{γ} :

$$2 \ \delta C^{0}_{\Lambda N} \left[\Delta V^{0}_{\Lambda N; \ 0^{+}} - \Delta V^{0}_{\Lambda N; \ 1^{+}} \right] + 2 \ \delta C^{1}_{\Lambda N} \left[\Delta V^{1}_{\Lambda N; \ 0^{+}} - \Delta V^{1}_{\Lambda N; \ 1^{+}} \right] = \Delta E_{\gamma}$$

 \rightarrow assuming DvH ansatz, SU(3)_{\it f} symmetry, and ${\cal A}_{\it l=1}^0={\cal A}_{\it l=1}^1$

Relation between l = 1 admixture amplitude and ΔE_{γ} :

$$\begin{aligned} -\mathcal{A}_{I=1} = & \frac{\sqrt{3}}{2} \Delta E_{\gamma} \left(-6 (C_{NN}^{0} - C_{\Lambda N}^{0}) [\Delta V_{\Lambda N; 0^{+}}^{0} - \Delta V_{\Lambda N; 1^{+}}^{0}] \right. \\ & \left. +2 (C_{NN}^{1} - C_{\Lambda N}^{1}) [\Delta V_{\Lambda N; 0^{+}}^{1} - \Delta V_{\Lambda N; 1^{+}}^{1}] \right)^{-1} \end{aligned}$$

In-medium Λ isospin impurity

Method/Input	В	$-\mathcal{A}_{I=1}$
$SU(3)_{ m f}$ (Phys. Lett 10, 153, 1964)	1	0.0148 ± 0.0006
LQCD (Phys. Rev. D 101, 034517, 2020)	1	0.0168 ± 0.0054
$\#$ EFT (LO)/[χ EFT(LO); $\Lambda \rightarrow \infty$]	4	0.0139 ± 0.0013
$\#$ EFT (LO)/[χ EFT(NLO); $\Lambda \rightarrow \infty$]	4	0.0168 ± 0.0014

Conclusions

 \to comprehensive study of $\Lambda nn,~^3_\Lambda H^*,~^4_{\Lambda\Lambda} H,~^5_{\Lambda\Lambda} H$ systems and CSB within LO <code>#EFT</code>

Hypernuclear trios $\Lambda nn(1/2^+) \& {}^{3}_{\Lambda}H^*(3/2^+)$

- question of experimentally observable Λnn resonance (physical Riemann sheet)
- ${}^3_{\Lambda}\mathrm{H}^*(3/2^+)$ virtual state

$^{4}_{\Lambda\Lambda}$ H(1⁺) & $^{5}_{\Lambda\Lambda}$ H(1/2⁺)

- ${}^4_{\Lambda\Lambda} H(1^+)$ on the verge of binding
- ${}^5_{\Lambda\Lambda}H$ particle stable taking into account both theoretical and experimental uncertainties

Charge symmetry breaking in $^{4}_{\Lambda}H/^{4}_{\Lambda}He$

- extraction of in-medium Λ isospin impurity A_{l=1}; all cases in agreement with free-space LQCD prediction and in most cases with free-space DvH value
- using $\mathcal{A}_{l=1}^{(0)}$ DvH value the procedure can be applied in reverse thus predicting experimental CSB in ${}_{\Lambda}^{4}H/{}_{\Lambda}^{4}He$