J/ψ plus W or Z Production: Consequences for NLO LDME Fits [arXiv: 2207.09366]

Mathias Butenschön (Universität Hamburg)

1. New Results for pp $\rightarrow J/\psi$ + W or Z 2. NLO Fits of NRQCD: State After new Results

1.1 Quarkonium Production within NRQCD

1/17

 n^{11}

Quarkonium production candidate theory: Nonrelativistic QCD (NRQCD)

Scaling

n

 v^3

 v^7 ("CO states")

 ${}^{3}S_{1}^{[1]}$ ${}^{1}S_{0}^{[8]}, {}^{3}S_{1}^{[8]}, {}^{3}P_{I}^{[8]}$

• Effective field theory based on scale hierarchy $Mv^2 \ll Mv \approx \Lambda_{QCD} \ll M$

• Factorization theorem:
$$\sigma_H = \sum_n \sigma_{Q\overline{Q}[n]} \cdot \langle O^H[n] \rangle$$

- *n*: Every possible Fock state, including color-octet (CO) states
- $\sigma_{Q\bar{Q}[n]}$: Production rate of $Q\bar{Q}[n]$, calculated in perturbative QCD
- $\langle O^H[n] \rangle$: Nonperturbative long distance matrix elements (LDMEs): Describe $Q\bar{Q}[n] \rightarrow H$, supposedly universal, taken from fits to data
- Scaling rules (here $H = J/\psi$):
 - Double expansion in α_s und v
 - Leading term in v expansion (${}^{3}S_{1}^{[1]}$) equals Color-Singlet Model
- Key test for NRQCD factorization: Are the LDMEs universal?

1.2 The NRQCD Calculations

• Factorization formulas (here J/ψ hadroproduction):

• Convolute partonic cross section with PDFs:

$$\sigma_{\text{hadr}} = \sum_{i,j} \int dx \, dy \, f_{i/p}(x) \, f_{j/p}(y) \cdot \sigma_{\text{part,ij}}$$

• NRQCD factorization:

$$\sigma_{\text{part,i,j}} = \sum_{n} \sigma(ij \to c\overline{c}[n] + X) \cdot \langle O^{J/\psi}[n] \rangle$$

• Amplitudes for $Q\overline{Q}[n]$ production by projector application, e.g.

$$A_{Q\overline{Q}[^{3}S_{1}^{[1/8]}]} = \varepsilon_{\alpha} \operatorname{Tr} \left[C \Pi^{\alpha} A_{Q\overline{Q}} \right] |_{q=0}$$
$$A_{Q\overline{Q}[^{3}P_{J}^{[1/8]}]} = \varepsilon_{\alpha\beta} \frac{d}{dq_{\beta}} \operatorname{Tr} \left[C \Pi^{\alpha} A_{Q\overline{Q}} \right] |_{q=0}$$

Derivatives \Rightarrow Larger expressions, higher propagator powers, non-standard IR singularity structure.

- $A_{0\overline{0}}$: Amputated pQCD amplitude for open $Q\overline{Q}$ production
- q: Relative momentum between Q and $ar{Q}$
- ε: Quarkonium polarization vectors

1.3 pp $\rightarrow J/\psi$ + W or Z

3/17

• Experimental data:

- $pp \rightarrow J/\psi + W^{\pm} + X$
- $pp \rightarrow J/\psi + Z + X$
- Born calculations:
 - Additional contrib. in $c\bar{c}[{}^{3}S_{1}^{[1]}] + W^{\pm}$
- Previous NLO calculations:

• $pp \rightarrow c\bar{c}[{}^{1}S_{0}^{[8]}, {}^{3}S_{1}^{[8]}, {}^{3}P_{J}^{[8]}] + W^{\pm} + X$ [Li, Song, Zhang, Ma (2011)] • $pp \rightarrow c\bar{c}[{}^{3}S_{1}^{[1]}, {}^{3}S_{1}^{[8]}] + Z + X$ [Song, Ma, Li, Zhang, Guo (2) [Song, Ma, Li, Zhang, Guo (2011)]

- $pp \rightarrow c\bar{c}[{}^{3}S_{1}^{[1]}] + Z + X$ (+polarization) [Gong, Lansberg, Lorcé, Wang (2013)]
- This Work: Analysis with missing channels (also $\psi(2S)$ and χ_{cI} feeddown)
 - $pp \rightarrow c\bar{c}[{}^{1}S_{0}^{[8]}, {}^{3}P_{I}^{[8]}, {}^{3}P_{I}^{[1]}] + Z + X \text{ at NLO}$
 - $pp \rightarrow c\bar{c}[{}^{3}P_{I}^{[1]}] + W^{\pm} + X$ at NLO
- Most complex NLO NRQCD calculation so far, because P state virtual corrections and additional W/Z mass scale.

[ATLAS (2014); ATLAS (2020)] [ATLAS (2015)] [Kniehl, Palisoc, Zwirner (2002)]

[Lansberg, Lorcé (2013)]

1.4 Contributions and Example Diagrams

- $J/\psi + W^{\pm}$: At LO only ${}^{3}S_{1}^{[8]}$, and ${}^{3}S_{1}^{[1]}$ not even at NLO:
 - Much simpler to calculate than $J/\psi + Z$ (No P state virtual corrections)
 - Caution: Formally NLO, but actually LO? For ³S₁^[1] not even leading contributions considered.

1.5 Organization of the NLO Calculation

5/17

Diagram generation with FeynArts

FORM and Mathematica: Treat squared amplitudes

Two Methods for Virtual Corrections:

FORM: Our generalization of Passarino-Veltman reduction \rightarrow Scalar integrals

FORM/AIR: IBP \rightarrow Master integrals

FORM/AIR: Cancel scalar products by denominators and directly apply IBP

Mathematica script: Simplification (few GB \rightarrow few MB)

Two Methods for Cross Section Evaluation:

Phase space slicing implementation

Dipole subtraction building on Catani/Seymour and Phaf/Weinzierl

- New: Structure of singularities for bound states
 - *New*: Additional dipoles for P states

[MB, Kniehl: NPB 905 (2020) 114843, NPB 957 (2020) 115056]

1.6 Scale Choices

6/17

• Renormalization and factorization scale μ_r and μ_f choices:

1. $\mu_r = \mu_f = m_{T,J/\psi}$ 2. $\mu_r = \mu_f = \sqrt{m_{T,J/\psi}m_{T,W/Z}}$ 3. $\mu_r = \mu_f = M_{W/Z}$ [Song, Ma, Li, Zhang, Guo (2011)] [Kniehl, Palisoc, Zwirner (2002)] [Gong, Lansberg, Lorcé, Wang (2013)]

• $M_{W/Z}$ and $\sqrt{m_{T,J/\psi}m_{T,W/Z}}$: Smaller NLO scale dependence compared to $m_{T,J/\psi}$.

• $m_{T,J/\psi}$ and $\sqrt{m_{T,J/\psi}m_{T,W/Z}}$: Particularly small K factor in $c\bar{c}[{}^{3}S_{1}^{[1]}] + Z$.

Use $\mu_r = \mu_f = \sqrt{m_{T,J/\psi} m_{T,W/Z}}$, but vary scales by factor 4 up and down.

1.7 Double Parton Scattering

- We calculate single parton scattering (SPS). But J/ψ and W/Z may originate from different partonic interactions \Rightarrow Double parton scattering (DPS)
- Usual DPS model: The two partonic interactions are independent, double parton PDFs factorize into single parton PDFs.

 \Rightarrow Pocket formula: $\sigma_{DPS} = \frac{\sigma_{J/\psi}\sigma_{W/Z}}{\sigma_{off}}$ with σ_{eff} universal "effective scattering area"

7/17

• In ATLAS J/ ψ + W or Z papers: DPS contributions estimated using $\sigma_{\rm eff} = 15^{+5,8}_{-4,2}$ mb from ATLAS W + 2 jet measurement:

Table 5 The inclusive (SPS + DPS) cross-section ratio $dR_{Z+J/\psi}^{incl}/dp_T$ for prompt and non-prompt J/ψ . Estimated DPS contributions for each bin, based on the assumptions made in this study, are presented

$p_{\rm T}^{J/\psi}$ (GeV)	Inclusive prompt ratio $(\times 10^{-7} / \text{GeV})$ value \pm (stat) \pm (syst) \pm (spin)			Estimated DPS (×10 ⁻⁷ / GeV) assuming $\sigma_{\rm eff} = 15$ mb
(8.5, 10)	10.8 ± 5.6	±1.9	±3.1	5.5 ± 2.1
(10, 14)	5.6 ± 1.9	± 0.8	± 1.2	1.7 ± 0.6
(14, 18)	1.9 ± 1.1	± 0.1	± 0.3	0.4 ± 0.1
(18, 30)	0.87 ± 0.37	±0.12	± 0.09	0.05 ± 0.02
(30, 100)	0.090 ± 0.037	± 0.012	± 0.006	0.0004 ± 0.0002

- We compare to DPS subtracted data. •
- Minor role of DPS supported by measurement of angular distribution $\Delta \phi$ (SPS: Peak at back-to-back, **DPS:** Random distribution)

1.8 Results for J/ ψ + Z

8/17

• Predictions using different LDME sets. Uncertainty bands due to

- 1. Renormalization and factorization scale variation: $\frac{1}{4} < \mu_r = \mu_f < 4$
- 2. NRQCD scale variation: $\frac{1}{2} < \mu_{\Lambda} < 2$
- 3. LDME fit errors (assuming no correlations)

- ${}^{3}S_{1}^{[1]}$: LO \rightarrow NLO stable. Including CO: Reasonable K factors (<6). CO important.
- Only one LDME set (Brambilla et al.) reasonably compatible with data.
- Other sets: Factors 10 below data. If difference due to DPS, DPS would need to be 10 times larger than SPS, contradicting physics picture and $\Delta \phi$ measurement.

1.9 Results for $J/\psi + W^{\pm}$

9/17

• Similar picture for J/ ψ + W: (Reminder: No ${}^{3}S_{1}^{[1]}$ contributions here)

- Reasonable agreement for Brambilla et al. LDME set, predictions using other LDME sets fall short of data by factor 10.
- Caution: For all states except ³S₁^[8], NLO is actually leading order.
 Large NNLO corrections can be expected.

2.1 NLO LDME Fits

- CS LDME $< O^{J/\psi}({}^{3}S_{1}^{[1]}) >$: Usually not fitted, but from $\Gamma(J/\psi \rightarrow e^{+}e^{-})$ or potential model
- Fitted CO LDMEs: $\langle O^{J/\psi}({}^{1}S_{0}^{[8]}) \rangle$, $\langle O^{J/\psi}({}^{3}S_{1}^{[8]}) \rangle$, $\langle O^{J/\psi}({}^{3}P_{0}^{[8]}) \rangle$
- Some fits consider $\psi(2S)$, χ_{cI} feeddown:
 - Corresponding CS LDMEs again usually from decay rates/potential models.
 Fit CO LDMEs <0^{J/ψ}(¹S₀^[8])>, <0^{J/ψ}(³S₁^[8])>, <0^{J/ψ}(³P₀^[8])>; <0^{χ_{c0}}(³S₁^[8])>.
- Data fitted to:
 - J/ψ hadroproduction with high transverse momentum p_T included in all fits.
 - Different fits include different further observables.
- In the following:
 - Take LDME sets from 6 fits and give predictions for: J/ψ photoproduction, hadroproduction of J/ψ (+polarization), η_c and $J/\psi + Z$. (Selection criteria: Full NLO calculations and sufficiently precise data available)
 - η_c (h_c) LDMEs are related to J/ψ (χ_{c0}) LDMEs via heavy quark spin symmetry.
 - Uncertainty bands: Only scale variations everywhere

2.2 Butenschön et al. LDMEs

11/17

• Data fitted to is described within scale uncertainties, other observables not.

2.3 Gong et al. LDMEs

12/17

• Data fitted to is described, other observables not. Also: Direct $J/\psi + Z$ production unphysically negative.

2.5 Chao et al. LDMEs: With η_c

13/17

• Nontrivial: Largely unpolarized J/ ψ compatible with data (although tensions to CDF data). But: J/ ψ hadroproduction $p_T < 7$ GeV, J/ ψ photo- and J/ $\psi + Z$ production not described.

2.6 Zhang et al. LDMEs

14/17

• Compared to Chao et al. fit on previous slide: Even better description of η_c production, at the expense of introducing also tensions with other determinations of $\langle O^{J/\psi}({}^{3}S_{1}^{[1]}) \rangle$.

15/17

2.7 Bodwin et al. LDMEs

• Nontrivial outcome: Unpolarized J/ ψ compatible with data. But: Small- and mid- p_T J/ ψ hadro-; J/ ψ photo-, η_c and J/ ψ + Z production not described. Also: Direct J/ ψ + Z production unphysically negative.

16/17

2.8 Brambilla et al. LDMEs

• Fit similar to previous Chao et al. and Zhang et al. fits. Differences: Better description of $J/\psi + Z$ production at the expense of a negative η_c cross section

Summary

- NRQCD factorization is candidate theory for Quarkonium production. Prediction: Universality of LDMEs.
- Ongoing work: Test LDME universality phenomenologically. Most data from ${\rm J}/\psi$ production and related observables.
- New results presented here: Complete NLO NRQCD calculation for $J/\psi + W$ or Z production:
 - Only Brambilla et al. LDME set roughly compatible with data.
 - Other LDME sets undershoot ATLAS data by one order of magnitude. Difference not explicable via double parton scattering.
- Overall picture however: There is no consistent NLO description of all data with same set of LDMEs, even if restricted to high p_T .
- Some ways forward:
 - Maybe more terms in v or α_s expansion
 - Further resummation of large logarithms in various kinematic regions
 - Changes in the formalism (Definition LDMEs in polarized production? Heavy Quark Spin Symmetry?)