Studying baryon-rich matter in low energy heavy ion collisions

Szymon Harabasz for the HADES collaboration QNP2022 – The 9th International Conference on Quarks and Nuclear Physics

Contents

- What can we learn?
- Azimuthal anisotropy
- Yields and distributions of light particles
- Pion-proton pairs
- Global spin polarization
- Large-scale correlations?
 - Strangeness scaling
 - Event-by-event fluctuations
- Electromagnetic probes:
 - Tool to study the phase structure of QCD

QNP2022 | Szymon Harabasz

Strong interaction matter at extreme conditions

Statistical Hadronization Model of particle production

What can we learn?

- Microscopic properties of baryon-dominated matter
- Equation-of-State
- First-order phase transition?
- QCD critical point?
- Observables:
 - E-b-e correlations and fluctuations
 - Flavor production
 - Collective effects
 - Dileptons

Azimuthal anisotropy ("flow")

with respect to the reaction plane (RP)

Constraining the EoS with v_n

and transport models

 JAM (NS3)	hard, momentum-independent
 JAM (MD1)	hard, momentum-dependent
 JAM (MD4)	soft momentum-dependent
 UrQMD	"hard EoS" (UrQMD 3.4)
 GiBUU	"soft EoS" (GiBUU 2019, Skyrme 12

Nuclear potential in transport models

- Usually implemented as a mean-field Skyrme potential:

$$V_{sk} = \alpha \left(\frac{\rho_{int}}{\rho_0}\right) + \beta \left(\frac{\rho_{int}}{\rho_0}\right)^{\gamma}$$

which can have "harder" or "softer" energy dependence

- Currently, parameters are partly fixed by requiring NM to be stable around ρ_0
- Problem with relativistic treatment
- Higher harmonic order higher discriminating power
- Consistent description of all v_n, for different phase-space regions and centrality classes is not yet there (but is necessary!)

Pion anisotropy in Au+Au collisions

- Good statistics to constrain models and equation of state
- There is room for improvement in the models
- Need for a simultaneous description of all v_n, for different:
 - particle species
 - (at HADES pions and kaons)
 - phase-space regions
 - centrality classes
 - colliding systems
 (at HADES Au+Au and Ag+Ag)

Pion yields and distributions

 Different calculations consistently fail to describe experimental data

- Note high net baryon density:
 - Influence of long-range EM interaction with the positively charged fireball
 - Most pions come from decays of baryonic resonances
 - Proper implementation of the in-medium spectral function of resonances is needed

QNP2022 | Szymon Harabasz

Shift of the pion energy by the Coulomb potential

More accurate extrapolation to low p_t/m_t

- Extracting the average value of the Coulomb potential energy
 - Improved formalism compared to previous works
- Translating it to the fireball size at the freeze-out \rightarrow density $\rightarrow \mu_B$
 - Method independent from SHM fits
 - Result in good agreement

Correlated pion-proton pairs

s_{NN}=2.42 GeV

π-р

1.5

Rapidity

- HADES Au+Au The dominant source of particle production at SIS18
 - High statistics allows multi-
 - differential analysis
 - Understanding of "kinematical" mass shift with S-matrix formalism
 - Fix in-medium cross-sections and spectral functions

Phase shift: P. M. Lo, B.Friman, M. Marczenko, K. Redlich, C. Sasaki, PRC 96, 015207 (2017)

SHM parameters: A. Motornenko, J. Steinheimer, V. Vovchenko, R. Stock, H. Stoecker, PLB 822, 136703 (2021)

Event generator: M.Cojnacki, A.Kisiel, W.Florkowski, W.Broniowski, Comput.Phys.Comm 181, 746-773 (2012)

Adapting to HADES energies: SH et al., PRC 102, 054903 (2020)

Global spin polarization

- First observed at RHIC: "most vortical fluid"
- What is the mechanism of converting \vec{L} to \vec{S} ?
 - Do we see hydrodynamic fluid with spin?
 - Hydrodynamics description requires (local) thermal equilibrium
- Now: thorough systematics study and support from Ag+Ag data
- Note that $|\vec{L}|$ is substantially lower in Ag+Ag than in Au+Au: $L_y \approx \frac{1}{2}Ab \sqrt{s}\sqrt{1 - (2M/\sqrt{s})^2}$

System with Multi-Particle

Correlations?

Quantum percolation at $\rho \sim 1.8\rho_0$

K. Fukushima, T. Kojo, W. Weise, PRD **102**, 096017 (2020)

- Different particles
- Different production mechanisms
- Different thresholds

but

- Common scaling with participant number
- Quarks are easily reshuffled between hadron states?

Long-range correlations

- Study event-by-event distributions of conserved charges (like baryon number) in a selected phase-space window
- Quantified by moments or cumulants well known from statistics
- Will deviate from the Poisson baseline if the matter is in the vicinity of the phase transition/critical point

Electromagnetic probes

- Photons (virtual and real):
 - Don't undergo strong interaction
 - Probe all the stages of heavy-ion collisions
- Radiation from hot and dense matter is isolated by subtracting:
 - First-chance NN collisions
 - Meson decays at the freeze-out

Electromagnetic spectral function

 $R \propto \frac{Im\Pi_{em}}{M^2}$

Intermediate mass region IMR

Perturbative QCD continuum, quark degrees of freedom

Thermal dileptons at high μ_B

Thermal dilepton production rates L. D. McLerran, T. Toimela, PRD 31 545 (1985)

$$\frac{dN_{ll}}{d^4qd^4x} = -\frac{\alpha_{em}^2}{\pi^3} \frac{L(M^2)}{M^2} f^B(q_0, T) Im \Pi_{em}(M, q, T, \mu_B)$$

Spectral function

- Melting of p clearly visible
- Collisional broadening is not sufficient to account for that

ρ melting handled properly by the local thermal equilibrium approach (CG)

CG FRA: PRC **92** 014911 (2015) CG GSI-Texas A&M: EPJA, **52** 5 131 (2016) CG SMASH: PRC **98** 054908 (2018) HSD: PRC **87** 064907 (2013) PLUTO: J. Phys. Conf. Ser **219** 032039 (2010)

Thermal dileptons at high μ_B

 $\frac{dN_{ll}}{d^4qd^4x} = -\frac{\alpha_{em}^2}{\pi^3} \frac{L(M^2)}{M^2}$ $f^B(q_0,T)[m\Pi_{em}(M,q,T,\mu_B)$ Boltzmann factor

- Boltzmann factor dominates the exponential shape of the spectrum if $Im\Pi_{EM}/M^2$ does not change much with M
- Slope of the <u>invariant</u> mass not affected by the fireball expansion
- True (average) source temperature not affected by the blue shift

Discovering the QCD "caloric curve"

Temperature vs. energy density (collision energy as a proxy) Up to now, only published data from HADES and NA60 Phase transition may manifest itself as a plateau

08.09.2022

Lifetime of the fireball

- Thermal radiation is emitted during the whole lifetime of the system
- The integrated yield in 0.3 < Mee / (GeV/c2)
 < 0.7 is the most sensitive to measure the lifetime

Heinz and Lee, PLB 259, 162 (1991) Barz, Friman, Knoll and Schulz, PLB 254, 315 (1991) Rapp, van Hees, PLB 753 (2016) 586

 At a phase transition "production" of the latent heat would increase the lifetime

Summary

- A comprehensive comparison of flow harmonics between experiment and transport models is a great tool to contrain the EoS
- More work must be done to get good agreement of phase-space distributions
 - Coulomb effect
 - Description of resonances
- Interactions in the system:
 - Global hyperon polarization keeps growing with decreasing collision energy
 - Common power-law scaling for all strange particles (in a given collision system)
 - Proton number cumulants consistent with long-range multi-particle correlations
- Electromagnetic probes:
 - Measurement of temperature and lifetime of the fireball
 - Structures in the excitation functon will signify a phase transition