Hyperon Form Factors

Viktor Thorén, Uppsala University on behalf of the BESIII collaboration

International Conference on Quarks and Nuclear Physics 2022 Online 2022-09-06

The Strong Interaction

Non-perturbative effects manifest in:

- Spin
- Mass
- Structure \leftarrow Our focus

а

utron charge density

ρ" (fm

-0.2

-0.4

Electromagnetic Form Factors

- Quantify deviation from pointlike nature
- Scalar functions of momentum transfer q^2
- Elastic/transition $(h_1 = h_2/h_1 \neq h_2)$
- Spacelike/timelike $(q^2 < 0/q^2 > 0)$

Hyperon	Mass $[GeV/c^2]$	Decay (BF)
Λ	1.116	$p\pi^{-}$ (63.9%)
		$n\pi^0$ (35.8%)
Σ_{-}	1.197	$n\pi^{-}$ (99.8%)
Σ^+	1.189	$p\pi^0$ (51.6%)
		$n\pi^+$ (48.3%)
Ξ^0	1.315	$\Lambda \pi^{0}$ (99.5%)
Ξ-	1.321	$\Lambda \pi^{-}$ (99.8%)
Ω	1.672	ΛK^{-} (67.8%)
		$\Xi^0 \pi^-$ (23.6%)
		$\Xi^{-}\pi^{0}$ (8.6%)

One-Photon Exchange

Spin 1/2 Baryons: Two independent form factors Matrix element:

$$\Gamma^{\mu} = \gamma^{\mu} F_1(q^2) + \frac{i\sigma^{\mu\nu} q_{\nu}}{2M} F_2(q^2)$$

- Dirac and Pauli form factors $F_1(q^2), F_2(q^2)$
- Sachs form factors $G_E(q^2) = F_1 + \frac{q^2}{m_B^2}F_2$, $G_M(q^2) = F_1 + F_2$ $G_E(0) = Q$, $G_M(0) = \mu$

Electromagnetic Form Factors

Spacelike $(q^2 < 0)$

Timelike $(q^2 > 0)$

Image credit: Perotti, E., PhD Thesis, Uppsala University (2020)

Viktor	Thorén
--------	--------

- Can be studied in elastic lepton scattering Hyperons are unstable → Difficult!
- Real-valued functions of q^2 .
- Related to charge and magnetization densities

Nat. Commun. 12, 1759 (2021).

$$< r_E >^2 = 6 \left. \frac{dG_E(q^2)}{dq^2} \right|_{q^2=0}$$

 $< r_M >^2 = \left. \frac{6}{G_M(0)} \left. \frac{dG_M(q^2)}{dq^2} \right|_{q^2=0}$

Timelike Form Factors

• Can be studied in lepton-antilepton annihilation Hyperon FFs experimentally accessible!

• Complex functions of
$$q^2$$
:
 $G_M(q^2) = |G_M(q^2)|e^{i\Phi_M}, G_E(q^2) = |G_E(q^2)|e^{i\Phi_E}$

• Observables $R = |G_E/G_M|, \Delta \Phi = \Phi_E - \Phi_M$

Cross section for $e^+e^- \rightarrow B\bar{B}$:

$$\frac{d\sigma(q^2)}{d\Omega} = \frac{\alpha^2\beta}{4q^2} \left(\frac{1}{\tau} |G_E|^2 \sin^2\theta + |G_M|^2 (1+\cos^2\theta)\right)$$

Effective form factor:

$$\left|G_{eff}(q^2)\right|^2 = \frac{2\tau |G_M(q^2)|^2 + |G_E(q^2)|^2}{2\tau + 1} = \frac{\sigma_{Born}(q^2)}{\left(1 + \frac{1}{2\tau}\right) \left(\frac{4\pi\alpha^2\beta C}{3q^2}\right)}$$

Phase Measurement

What is the significance of $\Delta \Phi$?

• SL and TL FFs related by dispersion relations.

• As
$$|q^2| \to \infty$$
: SL \to TI
 $\implies \Delta \Phi = n \cdot \pi$

• Oscillations of $\Delta\Phi$ reveal zero-crossings

Phys. Rev. D 104, 116016 (2021)

• Provides constraints for unmeasurable SL FFs

How to measure it?

- If $\sin \Delta \Phi \neq 0 \ B/\bar{B}$ can be polarized
- Experimental access to polarization in self-analyzing weak decays of hyperons!

$B\bar{B}$ Production in e^+e^- -Annihilation

Unpolarized e^+e^- beams \rightarrow Transverse polarization: $P_y(\cos\theta_{\Lambda}) = \frac{\sqrt{1-\eta^2}\cos\theta_{\Lambda}\sin\theta_{\Lambda}}{1+\eta\cos^2\theta_{\Lambda}}\sin(\Delta\Phi)$ Angular distibution: $\frac{d\Gamma}{d\Omega} \propto 1+\eta\cos^2\theta_{\Lambda}, -1 \leq \eta \leq 1$ $R = \sqrt{\tau}\sqrt{\frac{1-\eta}{1+\eta}}$

Self-Analyzing Hyperon Decays

Angular distribution of daughter baryon reveals mother hyperon polarization

$$\frac{d\Gamma}{d\Omega} = \frac{1}{4\pi} (1 + \alpha_{\Lambda} \hat{n} \bar{P}_{\Lambda})$$

Decay asymmetry parameter α_{Λ} *CP*-conservation: $\alpha_{\Lambda} = -\alpha_{\bar{\Lambda}}$

Precise measurements of α_{Λ} from BESIII via $J/\psi \to \Lambda \bar{\Lambda}^1, J/\psi \to \Xi \bar{\Xi}^2$

BESIII, ¹Nature Phys. 15 (2019) 631, ²Nature 606, 64–69 (2022)

Formalism for the Process $e^+e^- \to \Lambda \bar{\Lambda} \to p\pi^- \bar{p}\pi^+$

Full reaction described by: $\xi = (\theta, \theta_1, \phi_1, \theta_2, \phi_2) = (\theta, \Omega_1, \Omega_2)$

Fäldt, Kupsc, Phys. Lett. B 772 (2017) 16-20

- \mathcal{F}_i are known functions of the angles
- Same method used by BESIII for precise CP-tests in $J/\psi \to \Lambda \bar{\Lambda}$, $\Sigma \bar{\Sigma}$, $\Xi \bar{\Xi}$ (see talk by He Li on Wednesday)

When only $\Lambda/\bar{\Lambda}$ is measured two angles $\xi = (\theta, \theta_p)$ are sufficient.

$$\mathcal{W}_{\Lambda/\bar{\Lambda}}(\xi) = 1 + \eta \cos^2 \theta + \alpha_{\Lambda/\bar{\Lambda}} \sqrt{1 - \eta^2} \sin(\Delta \Phi) \sin \theta \cos \theta \cos \theta_p$$

Beijing Electron-Positron Collider (BEPCII)

Viktor Thorén

Beijing Spectrometer (BESIII)

- Near 4π coverage
- Helium-gas drift chamber
- CsI(Tl) crystal calorimeter
- Scan data:
 - 0.5 fb^{-1} from 2.0 to 3.08 GeV
 - 20 fb⁻¹ from 3.51 to 4.6 GeV

- Plastic scintillator TOF-system (endcaps upgraded to MRPC in 2015)
- 1 T super-conducting solenoid
- RPC-based muon chamber

$e^+e^- \to \Lambda \bar{\Lambda}, \Lambda \to p\pi^- + c.c. \text{ at } 2.396 \text{ GeV}$

 $\alpha_{\Lambda} = -\alpha_{\bar{\Lambda}} = 0.750$ fixed 555 events (2.5% bkg)

- Two-photon exchange contribution negligible
- First measurement of relative phase for any baryon!!!

$$\begin{split} R &= 0.96 \pm 0.14 \pm 0.02 \\ \Delta \Phi &= 37 \pm 12 \pm 6^{\circ} \\ \sigma_{Born} &= 118.7 \pm 5.3_{stat} \pm 5.1_{syst} \text{ pb} \end{split}$$

BESIII, Phys. Rev. Lett. 123 122003 (2019)

Viktor Thorén

$e^+e^- \to \Lambda \bar{\Lambda}, \Lambda \to p\pi^- + c.c.$ at High q^2

 $\mathcal{B}(\psi(3770) \to \Lambda \bar{\Lambda}) > 10$ times larger than previously assumed¹

Spin analysis at 3.773 GeV²: $\alpha_{\Lambda} = -\alpha_{\bar{\Lambda}} = 0.754$ fixed 262 events (0.5% bkg) $\eta_{\psi} = 0.85^{+0.12}_{-0.20} \pm 0.02$

 $\begin{aligned} R_{\psi} &= 0.48^{+0.21}_{-0.35} \pm 0.03 \\ \Delta \Phi_{\psi} &= 71^{+66}_{-46} \pm 5^{\circ} \end{aligned}$

 $^{1}\mathrm{BESIII},$ Phys. Rev. D 104 (2021) 9, L091104 $^{2}\mathrm{BESIII},$ Phys. Rev. D 105 L011101 (2022)

Interpretation

Phase measurement helps pin down charge Λ radius

 Fit^1 to data from $BESIII^2$ and $BaBar^3$ in different scenarios

Next step: What is the q^2 -dependence of $\Delta \Phi$?

¹Mangoni et al., Phys. Rev. D 104, 116016 (2021) ²BESIII, Phys. Rev. Lett. 123 122003 (2019) ³BaBar, Phys. Rev. D 76, 092006 (2007)

Effective FFs of Single Strange Hyperons

- Asymmetry in Σ isospin triplet FFs
- Relation between Λ/Σ FFs as expected from diquark correlations
- $\sigma_{Born}(e^+e^- \to \Sigma^+ \bar{\Sigma}^-) / \sigma_{Born}(e^+e^- \to \Sigma^- \bar{\Sigma}^+) = 9.7 \pm 1.3$ \to inconsistent with predictions from e.g_{Phys. Rev. D 101, 014014 (2020)}

$e^+e^- \rightarrow \Sigma^+ \bar{\Sigma}^-$

Form factor ratio $R = |G_E/G_M|$ for Σ^+

$\sqrt{s} \; [\text{GeV}]$	R
2.3960	$1.83 \pm 0.26 \pm 0.24$
2.6454	$0.66 \pm 0.15 \pm 0.11$
2.9000	$1.06 \pm 0.36 \pm 0.09$

Solid line: Fit result, Dashed line: G_E , Dotted line: G_M

BESIII, Phys. Lett. B 814, 136110 (2021)

Viktor Thorén

Hyperon Form Factors

19/21

BESIII

$e^+e^- \rightarrow \Xi \bar{\Xi}$

• σ_{Born} and $|G_{eff}|$ for $e^+e^- \to \Xi^0 \bar{\Xi}^0$, $\Xi^- \bar{\Xi}^+$ near threshold

¹BESIII: Phys. Rev. D 103, 012005 (2021) ² BESIII, Phys. Lett. B 820, 136557 (2021) 20/21

Viktor Thorén

- Hyperon EMFFs are important observables for understanding the structure of baryons
- Spin-polarisation analysis enables determination of relative phase $\Delta \Phi$
- $\Delta \Phi$ helps pin down spatial structure
- Many new results from BESIII
 - First phase measurement: $\Delta \Phi$ for Λ^0
 - $R = |G_E/G_M|$ for Λ^0 and Σ^+
 - Effective form factors for Λ^0 , Σ^{\pm} , Σ^0 , Ξ^0 , Ξ^-
 - More data to be analysed!