Electron data for neutrino scattering cross sections

Joanna Sobczyk

QNP2022, 6 September 2022

Precision Physics, Fundamental Interactions and Structure of Matter

Alexander von Humboldt Stiftung/Foundation

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 101026014

Neutrino oscillations

Aims & challenges

Motivation

Nuclear response

Electrons for neutrinos

$$\frac{d\sigma}{d\omega dq}\Big|_{\nu/\bar{\nu}} = \sigma_0 \Big(v_{CC} R_{CC} + v_{CL} R_{CL} + v_{LL} R_{LL} + v_T R_T \pm v_{T'} R_{T'} \Big)$$

$$\frac{d\sigma}{d\omega dq}\Big|_e = \sigma_M \Big(v_L R_L + v_T R_T \Big)$$

 \checkmark much more precise data

✓ we can get access to R_L and R_T separately (Rosenbluth separation)

 \checkmark experimental programs of electron scattering in JLab, MAMI, MESA

Ab initio nuclear theory

➡ Neutrinos challenge ab initio nuclear theory

• Controllable approximations within ab initial nuclear theory

Ab initio nuclear theory for neutrinos

Ab initio nuclear theory for neutrinos

Nuclear Hamiltonian

 $\mathcal{H} | \Psi \rangle = E | \Psi \rangle$

Electroweak currents

$$J^{\mu} = (\rho, \vec{j})$$

Many-body method

$$\mathscr{A} = \langle \Psi_m | J_\mu | \Psi_n \rangle$$

Coupled cluster method

Reference state (Hartree-Fock): $|\Psi\rangle$

Include correlations through e^T operator

similarity transformed Hamiltonian (non-Hermitian)

$$e^{-T}\mathscr{H}e^{T}|\Psi\rangle \equiv \bar{\mathscr{H}}|\Psi\rangle = E|\Psi\rangle$$

Expansion:
$$T = \sum t_a^i a_a^{\dagger} a_i + \sum t_{ab}^{ij} a_a^{\dagger} a_b^{\dagger} a_i a_j + \dots$$

singles doubles

←coefficients obtained through coupled cluster equations

Coupled cluster method

- ✓ Controlled approximation through truncation in *T*
- ✓ Polynomial scaling with A (predictions for ¹⁰⁰Sn, ²⁰⁸Pb)
- ✓ Works most efficiently for doubly magic nuclei

Quasielastic response

- Momentum transfer
 ~hundreds MeV
- Upper limit for ab initio methods
- Important mechanism for T2HK, DUNE
- Role of final state interactions
- Role of 1-body and 2body currents

First step: analyse the longitudinal response

$$\frac{d\sigma}{d\omega dq}\Big|_{e} = \sigma_{M}\left(\upsilon_{L}R_{L} + \upsilon_{T}R_{T}\right)$$

charge operator $\hat{\rho}(q) = \sum_{j=1}^{n} e^{iqz'_{j}}$

Longitudinal response

Lorentz Integral Transform + Coupled Cluster

Longitudinal response ⁴⁰Ca

JES, B. Acharya, S. Bacca, G. Hagen; PRL 127 (2021) 7, 072501

✓ Coupled cluster singles & doubles
 ✓ Two different chiral Hamiltonians
 ✓ Uncertainty from LIT inversion

First ab-initio results for many-body system of 40 nucleons

Transverse response

0.07

0.06

0.05

⁴⁰Ca

- This allows to predict electronnucleus cross-section
- Currently only 1-body current

R⁻¹ B¹(π) [WeV⁻¹] B¹(π) [WeV⁻¹] B¹(π) [WeV⁻¹] q = 300 MeV/c0.01 0.00 25 125 50 75 100 150 175 200 225 ω [MeV] 2-body currents important for ⁴He \rightarrow more correlations needed? \rightarrow 2-body currents strength depends on nucleus?

NNLO_{sat}

 $\Delta NNLO_{GO}(450)$

Low/high energies

Electroweak responses

Spectral functions

from Coupled Cluster

growing **q** momentum transfer \rightarrow final state interactions play minor role

17

accepted in Phys. Rev. C

Spectral function for neutrinos

- Comparison with T2K long
 baseline v
 oscillation
 experiment
- CC 0π events
- Spectral function implemented into NuWro Monte Carlo generator

 $\nu_{\mu} + {}^{16}\mathrm{O} \to \mu^- + X$

Outlook

- First results from the coupled cluster theory: on the way to obtain cross-section for neutrino scattering on medium-mass nuclei
- Role of 2-body currents and FSI for medium-mass nuclei
- Spectral functions (within Impulse Approximation):
 - Relativistic regime
 - Semi-inclusive processes
 - Further steps: 2-body spectral functions, accounting for FSI

Thank you for attention

BACKUP

Lorentz Integral Transform (LIT)

$$R_{\mu\nu}(\omega, q) = \int_{\mathcal{F}} \langle \Psi | J_{\mu}^{\dagger} | \Psi_{f} \rangle \langle \Psi_{f} | J_{\nu} | \Psi \rangle \delta(E_{0} + \omega - E_{f})$$

Continuum spectrum
Integral
transform

$$S_{\mu\nu}(\sigma, q) = \int d\omega K(\omega, \sigma) R_{\mu\nu}(\omega, q) = \langle \Psi | J_{\mu}^{\dagger} K(\mathcal{H} - E_{0}, \sigma) J_{\nu} | \Psi$$

Lorentzian kernel: $K_{\Gamma}(\omega, \sigma) = \frac{1}{\pi} \frac{\Gamma}{\Gamma^2 + (\omega - \sigma)^2}$

 $S_{\mu\nu}$ has to be inverted to get access to $R_{\mu\nu}$

Aims & challenges

Position of the oscillation peak depends on energy reconstruction

DUNE aims at uncertainties < 1% meaning O(25 MeV) precision of energy reconstruction

Systematic errors should be small since statistics will be high.

Final state interactions

JES et al, in preparation (2022)

How to account for the FSI? Optical potential for the outgoing nucleon