Generalized Polarizabilities of the proton Status and new results

Nikos Sparveris

9th International Conference of Quarks & Nuclear Physics

QNP 2022

Supported by the US DOE / NP award DE-SC0016577

Outline

Brief Introduction to the GPs

Overview - current status

Recent results

Prospects

Proton Polarizablities

Fundamental structure constants (such as mass, size, shape, ...)

Response of internal structure & dynamics to external EM field

Sensitive to the full excitation spectrum of the nucleon

Accessed experimentally through Compton Scattering processes

RCS: static polarizabilities \rightarrow net effect on the nucleon

Virtual Compton Scattering:

Virtuality of photon gives access to the GPs : $\alpha_E(Q^2) \& \beta_M(Q^2)$ (+ 4 spin GPs)

mapping out the spatial distribution of the polarization densities

Fourier transform of densities of electric charges and magnetization of a nucleon deformed by an applied EM field

PDG

Scalar Polarizablities

Response of internal structure to an applied EM field

Interaction of the EM field with the internal structure of the nucleon

Scalar Polarizablities

Response of internal structure to an applied EM field

Interaction of the EM field with the internal structure of the nucleon

Compton scattering amplitude expanded in the photon energy:

2nd order contribution

$$H_{\rm eff}^{(2)} = -4\pi \left(\frac{1}{2} \alpha_{E1} E^2 + \frac{1}{2} \beta_{M1} H^2 \right)$$

"stretchability"

$$\vec{d}_{E \text{ induced}} \sim \vec{\alpha} \vec{E}$$

Ē

B

External field deforms the charge distribution

"alignability"

 $\vec{d}_{M \text{ induced}} \sim \beta \vec{B}$

β_{para} > 0 β_{diam} < 0

Paramagnetic: proton spin aligns with the external magnetic field

Diamagnetic: π -cloud induction produces field counter to the external one

Virtual Compton Scattering

Virtual Compton Scattering

Virtual Compton Scattering

Sensitivity to the GPs grows as we measure above pion threshold

Early Experiments

MIT-Bates @ Q²=0.06 GeV²

MAMI-A1 @ $Q^2=0.33 \text{ GeV}^2$

Jlab-Hall A @ Q²=0.9 & 1.8 GeV²

Early Experiments

 $a_E \approx 10^{-3} V_N$ (stiffness / relativistic character) Data suggest non-trivial Q² evolution of a_E Current theoretical calculations not able to describe the enhancement at low Q² Q² = 0.33 (GeV/c)² measured twice at MAMI:

- Phys. Rev. Lett 85, 708 (2000)
- Eur. Phys. J. A37, 1-8 (2008)

 β_M small $\leftarrow \rightarrow$ cancellation of competing mechanisms

Large uncertainties

Higher precision measurements needed

→ Quantify the balance between diamagnetism and paramagnetism

Theory

Theoretical calculations predict a smooth fall off for \mathbf{a}_{E} Can not account for the non-trivial structure of \mathbf{a}_{E} suggested by the data

Lattice QCD: No calculations for the GPs yet

Recent Measurements: MAMI

MAMI A1/1-09 (vcsq2)

MAMI A1/3-12 (vcsdelta)

below threshold

above threshold

Both experiments utilized the A1 setup at MAMI

A1/1-09 @ MAMI

For LEX the higher order terms have to be negligible

 $d^5\sigma = d^5\sigma^{BH+Born} + q'_{cm} \cdot \phi \cdot \Psi_0 + \mathcal{O}(q'^2_{cm})$

A phase space masking has to be applied to keep these terms smaller than the 2%-3% level

Figure 3.13: (Left) behavior of $\mathcal{O}^{DR}(q'_{cm}^{2})$ in the $(\cos(\theta_{cm}), \varphi_{cm})$ -plane at $q'_{cm} = 87.5 \ MeV/c$ and (right) two-dimensional representation of the angular region where $\mathcal{O}^{DR}(q'_{cm}^{2}) < 2\%$ (blue), the red squares correspond to the two areas of interest to perform the GP extraction.

Figure from PhD thesis of L. Correa, Mainz / Cl. Ferrand

New « vcsq2 » data:

- OOP kinematics (to access the blue region)
- -LEX Fit done with bin selection at $Q^2 = 0.1$ and 0.2 GeV².
- was found not necessary at Q² = 0.45 GeV².

In-plane

8.5 deg OOP

(material from H. Fonvieille)

A1/1-09 @ MAMI

~ 1.0 GeV beam

 $Q^2 = 0.1 (GeV/c)^2$, 0.2 (GeV/c)², and 0.45 (GeV/c)²

Figure 5.8: Setting INP: measured $ep \rightarrow ep\gamma$ cross section at fixed $q'_{cm} = 112.5 \ MeV/c$ with respect to φ_{cm} for all the $\cos(\theta_{cm})$ -bins. The curves follow the convention of figure 5.6.

Figure from PhD thesis of L. Correa, Mainz / Cl. Ferrand

BH+B ----Polarizability ---effect

GP effect typically 5% - 15% of the cross section

Polarizability fits:

DR fit:

DR calculation includes full dependency in q'cm

LEX fit:

truncated in q'cm. Suppress contribution from higher order terms

A1/1-09 Results

A1/3-12 @ MAMI

Goal 2-fold: 1) Measurement of the electric GP a_E
2) First measurement of N->∆ transition form factors through the γ channel

1.1 GeV beam, 5cm LH_2 , spectrometers A & B in coinc.

Measurement at $Q^2 = 0.2 (GeV/c)^2$

Fig. 1. The missing mass spectrum. The two peaks corresponding to the photon and to the π^0 are very well separated. The photon peak has been multiplied by a factor of 10 so that it can be clearly seen in the figure. The inserted panel shows the center of the photon missing mass peak before (gray circle) and after (black box) the momentum calibration as a function of the different run numbers.

A1/3-12 Results

MAMI Results

Phys. Rev. Lett 123, 192302

Phys. Rev. C 103, 025205

Eur. Phys. J. A55, 182

PhD students:

Jure Bericic (Ljubljana Univ.) Loup Correa (Clermont-Fd Univ.) Meriem BenAli (Clermont-Fd Univ.) Adam Blomberg (Temple Univ.)

A1/3-12 @ MAMI

Revisiting the $Q^2=0.33 \text{ GeV}^2$ data

 $Q^2 = 0.33 (GeV/c)^2$ measured twice at MAMI - two different experiments

- Phys. Rev. Lett 85, 708 (2000)
- Eur. Phys. J. A37, 1-8 (2008)

Analysis revisited (unpublished):

Experiment E12-15-001: JLab / Hall-C

Conduct measurements with high precision targeting explicitly the kinematical regime of interest

Measure above pion threshold → enhanced sensitivity to the GPs

Hall C HMS and SHMS

SHMS:

- 11-GeV Spectrometer
- Partner of existing 6-GeV HMS

MAGNETIC OPTICS:

- Point-to Point QQQD for easy calibration and wide acceptance.
- Horizontal bend magnet allows acceptance at forward angles (5.5°)

Detector Package:

- Drift Chambers
- Hodoscopes
- Cerenkovs
- Calorimeter
- All derived from existing HMS/SOS detector designs

 Super High Momentum Spectrometer

- HB, 3 Quads, Dipole
- P → 2 11 GeV
- Resolution: $\delta < 0.1\%$
- Acceptance: δ →30%, 4 msr
- $-5.5^{\circ} < \theta < 40^{\circ}$
- Good e/π/K/p PID
- High Momentum Spectrometer
 - -3 Quads, Dipole
 - P → 7.5 GeV
 - Resolution: $\delta < 0.1\%$
 - Acceptance: δ →18%, 6.5 msr
 - $-10.5^{\circ} < \theta < 90^{\circ}$
 - Good e/π/K/p PID

Hall C: SHMS, HMS 4.56 GeV 20 µA Liquid hydrogen 10 cm cross sections & azimuthal asymmetries

$$A_{(\phi_{\gamma^*\gamma}=0,\pi)} = \frac{\sigma_{\phi_{\gamma^*\gamma}=0} - \sigma_{\phi_{\gamma^*\gamma}=180}}{\sigma_{\phi_{\gamma^*\gamma}=0} + \sigma_{\phi_{\gamma^*\gamma}=180}}$$

sensitivity to GPs

suppression of systematic asymmetries

Projected Measurements

 $Q^2 = 0.4 (GeV/c)^2$

avoid BH region stay above $\theta_{\gamma^*\gamma}{>}\,120^\circ$

Kinematical Settings

	Kinematical	$\theta_{\gamma^*\gamma}^{\circ}$	θ_e°	$P'_e(MeV/c)$	θ_p°	$P'_p(MeV/c)$	S/N	beam time
	Setting					1		(days)
	Kin Ia	155	7.97	3884.4	37.20	893.20	1.1	0.5
	Kin Ib	155	7.97	3884.4	51.26	893.20	2.7	0.5
	Kin IIa	140	7.97	3884.4	33.08	859.90	1	0.45
	Kin IIb	140	7.97	3884.4	55.38	859.90	3.7	0.55
	Kin IIIa	120	7.97	3884.4	27.85	794.68	0.9	0.45
	Kin IIIb	120	7.97	3884.4	60.61	794.68	6.2	0.55
Part I	Kin IVa	165	9.39	3820.5	40.85	1010.40	1.3	0.5
	Kin IVb	165	9.39	3820.5	48.45	1010.40	2.4	0.5
	Kin Va	155	9.39	3820.5	38.34	995.20	1	0.5
	$\operatorname{Kin}\operatorname{Vb}$	155	9.39	3820.5	50.96	995.20	3.2	0.5
	Kin VIa	128	9.39	3820.5	31.84	919.43	0.7	0.95
	Kin VIb	128	9.39	3820.5	57.46	919.43	7.8	0.55
	Kin VIIa	165	11.54	3708.6	40.81	1175.25	2.6	1.5
	Kin VIIb	165	11.54	3708.6	47.35	1175.25	5	2
Part II	Kin VIIIa	160	11.54	3708.6	39.73	1167.72	2.2	1.5
	Kin VIIIb	160	11.54	3708.6	48.43	1167.72	6.3	2
	Kin IXa	140	11.54	3708.6	35.52	1117.38	1.2	1.5
	Kin IXb	140	11.54	3708.6	52.64	1117.38	8	2

Part II

Add more statistics and extend measurements further in $Q^2\,$

Elastic data

Kinematic	$ heta_e^\circ$	$P_e(GeV/c)$	θ_p°	$P_p(GeV/c)$
Elastic I	10.76	4.193	61.16	0.893
Elastic II	10.41	4.214	61.95	0.863
Elastic III	9.64	4.259	63.76	0.795

$N \rightarrow \Delta$ TFFs

New results: VCS cross sections

Q²=0.27 GeV²

Q²=0.33 GeV²

New results: GPs

Ruonan Li (Temple Univ.) Hamza Atac (Temple Univ.) Mark Jones (JLab.) Michael Paolone (NMSU)

Q^2 dependence of the electric GP

Traditional fits using predefined functional forms

Data-driven techniques

no direct underlying functional form is assumed

Dipole (?) $(\chi^2_v=3.7)$

Systematically overestimates MAMI-VI

Systematically underestimates MAMI-I & IV

Cuts grossly through the new measurements

Rasmussen, C. E., and Williams, C. K. I. *Gaussian Processes for Machine Learning* the MIT Press, Cambridge Massachusetts, 2006, ISBN 026218253X, ©2006 Massachusetts Institute of Technology.

Spatial dependence of induced polarizations on an external EM field

Nucleon form factor data → light-front quark charge densities

Formalism extended to the deformation of these quark densities when applying an external e.m. field:

GPs → spatial deformation of charge & magnetization densities under an applied e.m. field

Induced polarization in a proton when submitted to an e.m. field

Phys. Rev. Lett. 104, 112001 (2010)

M. Gorchtein, C. Lorce, B. Pasquini, M. Vanderhaeghen

Spatial dependence of induced polarizations on an external EM field

Nucleon form factor data → light-front quark charge densities

Formalism extended to the deformation of these quark densities when applying an external e.m. field:

GPs → spatial deformation of charge & magnetization densities under an applied e.m. field

x-y defines the transverse plane with the z-axis being the direction of the fast-moving proton

Polarizability radii

$$\langle r_{\alpha_E}^2 \rangle = \frac{-6}{\alpha_E(0)} \cdot \frac{d}{dQ^2} \alpha_E(Q^2) \Big|_{Q^2=0}$$

$$\langle r_{\alpha_E}^2 \rangle = 1.36 \pm 0.29 \text{ fm}^2$$

$$\langle r_{\beta_M}^2 \rangle = \frac{-6}{\beta_M(0)} \cdot \frac{d}{dQ^2} \beta_M(Q^2) \bigg|_{Q^2 = 0}$$

 $\langle r^2_{\beta_M}\rangle = 0.63\pm 0.31~{\rm fm}^2$

Polarizability radii

$$\langle r_{\alpha_E}^2 \rangle = \frac{-6}{\alpha_E(0)} \cdot \frac{d}{dQ^2} \alpha_E(Q^2) \bigg|_{Q^2 = 0}$$

$$\langle r_{\beta_M}^2 \rangle = \frac{-6}{\beta_M(0)} \cdot \frac{d}{dQ^2} \beta_M(Q^2) \bigg|_{Q^2 = 0}$$

Moving forward

VCS-II at JLab (Hall-C): new JLab proposal for JLab PAC51 (summer 2023):

targeted measurements in the area of interest, higher & lower in Q^2

Eur. Phys. J. A 57 (2021) 11, 316

Virtual Compton scattering at low energies with a positron beam

Barbara Pasquini^{n,1,2}, Marc Vanderhaeghen^{b,3}

¹Dipartimento di Fisica, Università degli Studi di Pavia, 27100 Pavia, Italy
²Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, 27100 Pavia, Italy
³Institut für Kernphysik and PRISMA⁺ Cluster of Excellence, Johannes Gutenberg Universität, D-55099 Mainz, Germany

(a): The beam-charge asymmetry as a function of the photon scattering angle at Q2 = 0.43 GeV 2.

(b) & (c): The electron and positron beam-spin asymmetry as a function of the photon scattering angle for out-of-plane kinematics.

Challenges for the theory - in particular for $a_E(Q^2)$

Summary

New high precision measurements of fundamental system properties (GPs)

Insight to spatial deformation of the nucleon densities under an applied e.m. field, interplay of paramagnetism-diamagnetism in the proton, polarizability radii

A non-trivial behavior in $a_{\text{E}}(\text{Q}^2)$ is confirmed albeit with a smaller magnitude than originally suggested

Challenge for the theory with respect to $a_E(Q^2)$

High precision benchmark data for theory - strong constraints to the theoretical predictions

Future experimental measurements can explore in more detail pinning down precisely the shape of the structure is important input for the theory

Future LQCD calculations will be of great interest

Thank you!