Photon and charmonium production in electron-positron annihilation at $\sqrt{s}=10.6 \mathrm{GeV}$. in framework of BetheSalpeter equation

Shashank Bhatnagar Chandigarh University, India

In collaboration with
Vaishali Guleria (Chandigarh University)

9th International Conference on Quarks and Nuclear Physics (Sept. 5-9, 2022)

Outline:

- Hadron production in electron-positron annihilation
- Bethe-Salpeter dynamics of composite hadron
$\Rightarrow e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow \gamma \chi_{c 0, c 1}(\mathrm{nP})$
$>e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow \gamma \eta_{c}(\mathrm{nS})$
- Summary

Hadron production in electron-positron annihilation

- There is significant discrepancy between the experimental measurements by BABAR and Belle collaborations of total cross sections of $e^{+} e^{-}>\mathrm{J} / \psi \eta_{c} ; \mathrm{J} / \psi \chi_{c J}$, and corresponding NRQCD predictions at energies $\sqrt{s}=10.6 \mathrm{GeV}$.
- Measurement of cross sections for $e^{+} e^{-->J / \psi \eta_{c} \text { carried out by Belle [PRL89(2002), PRD70(2004)]and BABAR [PRD72 }}$ (2005)] collaborations has led to rapid progress in theoretical description of heavy-quarkonium through NRQCD. Cross section measured by Belle was greater than the cross section calculated by Braaten and lee [PRD67(2003); PRD72(2005)] by an order of magnitude.
- Incorporation of NLO corrections to strong coupling constant α_{s}, were not large enough to bring theoretical results close to the Belle data. But incorporation of relativistic corrections by Bodwin, lee, Yu [PRD77,(2008)], besides the NLO QCD corrections was found to resolve the discrepancy within errors.
- Also interference between QED and QCD tree-level diagrams also gave significant contributions[PRD98, 094001 (2018)]
- Also found that discrepancy between experimental results and theoretical predictions could be resolved by taking into account intrinsic motion of quarks inside hadron in Light-cone expansion method [Braguta et al.,PRD72(2005)].
- Very recently measurements were made on the cross sections for the processes: $e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow \gamma \eta_{c}$ (nS), and $e^{+} e^{-}$ $\gamma^{*} \rightarrow \gamma \chi_{c 0, c 1}$ at $\sqrt{s}=10.52 \mathrm{GeV} ., 10.58 \mathrm{GeV}$., and 10.867 GeV . at Belle [S.Jia et al., PRD 98(2018)].
- Also recent measurements on $e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow \gamma \chi_{c 0, c 1, c 2}$ at $\sqrt{s}=4-4.6 \mathrm{GeV}$ using integrated luminosity, $19.3 \mathrm{fb}^{-1}$ reported by BESIII reported no significant signal for these processes. [Ablikin et al., PRD104 (2021)]
- Calculations of this process have been done using: NRQCD [Chung, Lee, Yu[PRD78(2008)], Light-cone[Braguta,PRD82 (2010)] , Bethe-Salpeter equation [Chang, Wang, Wu, arxiv:1005.4723 [hep-ph]]. Number of studies carried out.

Present work*:

[S.Bhatnagar, V.Guleria, arxiv:2206.02229[hep-ph]]

- Calculated the cross sections for production of ground and excited charmonium states in $e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow \gamma H$, at $\sqrt{s}=10.6 \mathrm{GeV}$. through leading order (LO) (tree-level) diagrams, $\sim O\left(\alpha_{e m}^{3} \alpha_{s}^{0}\right)$ which proceed through exchange of a virtual photon in the framework of 4×4 Bethe-Salpeter equation (BSE) in colour singlet channel.
- H is a heavy quarkonium with $\mathrm{C}=+1$, and can be S -wave spin singlet states, such as: $\eta_{c}(\mathrm{nS}), \eta_{b}(\mathrm{nS})$, or P -wave spin triplet states, such as $\chi_{c j}$ or $\chi_{b j}(\mathrm{~J}=0,1,2)$.

Features of BSE

- BSE is a dynamical equation based approach, with a firm base in field theory, and is a conventional approach in dealing with relativistic bound state problems.
- Interaction kernel, K involves summation over all possible two-particle irreducible interactions between two constituents forming bound state.
- In practical calculations, we use Ladder Approximation- where kernel involves summation over an infinite ladder of quantum exchanges between two interacting particles forming bound state.
BSE is quite general, and provides effective description of bound quark- anti-quark systems, through a suitable choice of input kernel for confinement.
Advantages of BSE approach:
- Fully relativistic approach, that incorporates the relativistic effect of quark spins and can also describe internal motion of constituent quarks within the hadron in a relativistically covariant manner.
- Due to above features, it provides a realistic description for analyzing hadrons as composite objects.
- It can be applied to study processes over a wide range of energies, and with little number of input parameters!!

BSE under Covariant Instantaneous Ansatz

- A quark-anti quark bound state system can be described by a Bethe-Salpeter equation (BSE),

$$
S_{F}^{-1}\left(p_{1}\right) \Psi(P, q) S_{F}^{-1}\left(-p_{2}\right)=i \int \frac{d^{4} q^{\prime}}{(2 \pi)^{4}} K\left(q, q^{\prime}\right) \Psi\left(P, q^{\prime}\right),
$$

4D BSE \rightarrow 3D form using Covariant Instantaneous Ansatz, $K\left(q, q^{\prime}\right)=K\left(\hat{q}, \hat{q}^{\prime}\right)$;
$>\quad \hat{q}_{\mu}=q_{\mu}-\frac{q \cdot P}{p^{2}} P_{\mu}$ (Transverse to P), with $\hat{q} . \mathrm{P}=0$, and $\quad \sigma P_{\mu}=\frac{q \cdot P}{p^{2}} P_{\mu} \quad$ (Longitudinal to P), with 4D volume element, $d^{4} q=d^{3} \hat{q} M d \sigma$

$$
\Psi(P, q)=S_{1}\left(p_{1}\right) \Gamma(\hat{q}) S_{2}\left(-p_{2}\right), \quad \Gamma(\hat{q})=\int \frac{d^{3} \hat{q}^{\prime}}{(2 \pi)^{3}} K\left(\hat{q}, \hat{q}^{\prime}\right) \psi\left(\hat{q}^{\prime}\right)
$$

$$
|\hat{q}|=\sqrt{q^{2}-(q \cdot P)^{2} / P^{2}} \quad \text { is length of 3D vector, } \hat{q} \text { (a Lorentz-invariant variable) }
$$

3D reduction of BSE under Covariant Instantaneous Ansatz leads to 3D Salpeter equations:

$$
\begin{aligned}
\left(M-\omega_{1}-\omega_{2}\right) \psi^{++}(\hat{q}) & =\Lambda_{1}^{+}(\hat{q}) \Gamma(\hat{q}) \Lambda_{2}^{+}(\hat{q}) \\
\left(M+\omega_{1}+\omega_{2}\right) \psi^{--}(\hat{q}) & =-\Lambda_{1}^{-}(\hat{q}) \Gamma(\hat{q}) \Lambda_{2}^{-}(\hat{q}) \\
\psi^{+-}(\hat{q}) & =0 \\
\psi^{-+}(\hat{q}) & =0
\end{aligned}
$$

- 3D Salpeter equations used for determination of hadron mass spectrum
- A crucial role is played by variable, \hat{q}, which is always orthogonal to P_{μ}. 3D Salpeter equations (used for mass spectral calculations), as well as the 4D hadron-quark vertex $\Gamma(\hat{q})$ (used for 4D transition amplitude calculations), have a common dependence on \hat{q}^{2}, whose most important property is $\hat{q}^{2}>0$ over the entire 4D space.
- Lorentz-invariant nature of \hat{q}^{2} increases the applicability of this framework of BSE under CIA all the way from low energy spectra to high energy transition amplitudes.
- Most important aspect: Appearance of hadron-quark vertex $\Gamma(\hat{q})$ on RHS of Salpeter equations. This provides a vital dynamical link between 3D mass spectrum and the 4D transition amplitudes.

Recent calculations using BSE under Covariant instantaneous an

- Calculated mass spectrum of ground and excited states of $0^{++}, 0^{-+}, 1^{--}, 1^{+-}, 1^{++}$heavylight ($q Q$) quarkonia, with the perturbative incorporation of one-gluon exchange, through analytic solutions of mass spectral equations, that were derived through 3D Salpeter equations.
- Also derived the analytic structures of 3D forms of radial wave functions, $\phi(\hat{q})$, through solutions mass spectral equations in approximate harmonic oscillator basis, which were in turn used to calculate the following transitions:
- (a) Leptonic decays of $0^{-+}, 1^{--}, 1^{+-}, 1^{++}$quarkonia,
- (b) Two-photon decays of 0^{-+}, and 0^{++}quarkonia,
(c) M1 radiative decays, $1^{--} \rightarrow 0^{-+} \gamma, 0^{-+} \rightarrow 1^{--} \gamma$,
\triangleright (d) E1 radiative decays, $1^{--} \rightarrow 0^{++} \gamma, 0^{++} \rightarrow 1^{--} \gamma, 1^{+-} \rightarrow 0^{-+} \gamma, 0^{-+} \rightarrow 1^{+-} \gamma$,
E.Gebrehana, S.Bhatnagar, H.Negash, PRD100, 054034 (2019)
S.Bhatnagar, L. Alemu, PRD97, 034021 (2018)
V.Guleria, S.Bhatnagar, IJTP 60, 3143 (2021)
S.Bhatnagar, E.Gebrehana, PRD102, 094024 (2020)
V.Guleria, E.Gebrehana, S.Bhatnagar, PRD104, 094045 (2021)

Cross section for $e^{-} e^{+} \rightarrow \gamma^{*} \rightarrow \gamma \chi_{c 0}$

- Four diagrams at leading order contribute equally to this process.

$$
M_{f_{i}}^{1}=-i e e_{Q}^{2}\left[\bar{v}^{(s 2)}\left(\bar{p}_{2}\right) \gamma_{\mu} u^{(s 1)}\left(\bar{p}_{1}\right)\right] \frac{-1}{s} \int \frac{d^{4} q}{(2 \pi)^{4}} \operatorname{Tr}\left[\Psi_{S}(P, q) \epsilon^{\gamma^{\prime}} S_{F}\left(p_{1}^{\prime}\right) \gamma_{\mu}\right]:
$$

$$
\begin{gathered}
\bar{\Psi}_{S}(P, q)=S_{F}\left(-p_{2}\right) \bar{\Gamma}_{S}(\hat{q}) S_{F}\left(p_{1}\right): \\
\psi(P, q)=f_{1}(q, P)-i \not p f_{2}(q, P)-i \not q f_{3}(q, P) \\
-[\boldsymbol{P}, q] f_{4}(q, P),
\end{gathered}
$$

$$
\psi(\hat{q})=M f_{1}(\hat{q})-i \not P f_{2}(\hat{q})-i \not{q} \not f_{3}(\hat{q})-\frac{2 \not p \not{q} \not{q}}{M} f_{4}(\hat{q}) .
$$

1. C. H. L. Smith, Ann. Phys. (N.Y.) 53, 521 (1969),
2. S.Bhatnagar, S-Y.Li, JPG32, 949 (2006).
3. S.Bhatnagar, J.Mahecha, Y.Mangesha, PRD90, 014034 (2014)
dimensionality, M under Covariant Instantaneous Ansatz
$\Psi_{S}(\hat{q})=[M-i P] \phi_{S}(\hat{q}) \quad$ 3D BS wave function of scalar quarkonium with leading Dirac structures.
ϕ_{s} derived analytically through analytic solutions of mass spectral equations of scalar quarkonia in approximate harmonic oscillator basis with expressions:
$\phi_{S}(1 P, \hat{q})=\sqrt{\frac{2}{3}} \frac{1}{\pi^{3 / 4}} \frac{1}{\beta_{S}^{5 / 2}} \hat{\hat{q}} e^{-\frac{\hat{\phi}^{2}}{2 \rho \frac{2}{3}}}$,
$\phi_{S}(2 P, \hat{q})=\sqrt{\frac{5}{3}} \frac{1}{\pi^{3 / 4}} \frac{1}{\beta_{S}^{5 / 2}} \hat{q}\left(1-\frac{2 \hat{q}^{2}}{5 \beta_{S}^{2}}\right) e^{-\frac{\phi^{2}}{2 \beta \xi^{2}}}$

$$
\begin{aligned}
& M_{f i}^{1}=-i e e_{Q}^{2}\left[\bar{v}^{(s 2)}\left(\bar{p}_{2}\right) \gamma_{\mu} u^{(s 1)}\left(\bar{p}_{1}\right)\right] \frac{-1}{s}\left(\frac{-1}{M^{2}}\right)\left(\frac{-1}{M^{2}}\right) \times \\
& \int \frac{d^{3} \hat{q}}{(2 \pi)^{3}} \int \frac{M d \sigma}{2 \pi i} T r\left[\left(-\frac{\bar{\Psi}+((\hat{q})(M-2 \omega)}{\left[\sigma-\left(-\frac{1}{2}+\frac{\omega}{M}\right)\right)\left[\sigma-\left(\frac{1}{2}-\frac{\omega}{M}\right)\right]}-\frac{\bar{\Psi}^{--}(\hat{q})(M+2 \omega)}{\left[\sigma-\left(-\frac{1}{2}-\frac{\omega}{M}\right)\right]\left[\sigma-\left(\frac{1}{2}+\frac{\omega}{M}\right)\right]}\right) \times\right. \\
& k^{\prime} \frac{-i\left(k+\frac{1}{2} P+A+\sigma P\right)+m}{\left[\sigma-\left(-\frac{1}{2}-\frac{2 E^{2}}{M^{2}}+\frac{1}{M} \sqrt{\left.\left.\omega^{2}+\frac{4 E^{4}}{M^{2}}\right)\right]\left[\sigma-\left(-\frac{1}{2}-\frac{2 E^{2}}{M^{2}}-\frac{1}{M} \sqrt{\omega^{2}+\frac{4 E^{4}}{M^{2}}}\right)\right]} \gamma_{\mu}\right] .\right.}
\end{aligned}
$$

$$
\begin{aligned}
& S_{F}\left(p_{1}\right)=\frac{\Lambda_{1}^{+}(\hat{q})}{\eta_{1}}+\frac{\Lambda_{1}^{-}(\hat{q})}{\eta_{2}} \\
& S_{F}\left(-p_{2}\right)=\frac{-\Lambda_{2}^{+}(\hat{q})}{\eta_{3}}+\frac{-\Lambda_{2}^{-}(\hat{q})}{\eta_{4}} ; \\
& \eta_{1,2}=M \sigma+\frac{1}{2} M \mp \omega_{1} ; \\
& \eta_{3,4}=-M \sigma+\frac{1}{2} M \mp \omega_{2}, \\
& S_{F}\left(p_{1}^{\prime}\right)=\frac{-i\left(k+\frac{1}{2} P+A \hat{A}+\sigma P\right)+m}{-M^{2} \sigma^{2}-\left(4 E^{2}+M^{2}\right) \sigma-\alpha} \\
& \alpha=\hat{q}^{2}+m^{2}-2 E^{2}-\frac{M^{2}}{4} .
\end{aligned}
$$

1. S.Bhatnagar, V.Guleria, arxiv: 2206.02229[hep-ph]
2. V.Guleria, E.Gebrehana, S.Bhatnagar, PRD104, 094045 (2021)

- The poles of the propagators, $S_{F}\left(p_{1}\right), S_{F}\left(-p_{2}\right)$, and $S_{F}\left(p_{1}^{\prime}\right)$ with corresponding pole positions in complex σ-plane:
$\sigma_{1}^{ \pm}=-\frac{1}{2} \mp \frac{\omega}{M} \pm i \epsilon$
$\sigma_{2}^{ \pm}=\frac{1}{2} \mp \frac{\omega}{M} \pm i \epsilon$
$\beta^{ \pm}=\left(-\frac{1}{2}-\frac{2 E^{2}}{M^{2}}\right) \mp \frac{1}{M} \sqrt{\omega^{2}+\frac{4 E^{4}}{M^{2}}} \pm i \epsilon$.

$$
\begin{aligned}
& M_{f i}=i\left[\bar{v}^{(s 2)}\left(\bar{p}_{2}\right) \gamma_{\mu} u^{(s 1)}\left(\bar{p}_{1}\right)\right] M_{\mu} \\
& M_{\mu}=\beta_{1} \epsilon_{\mu}^{\prime}+\beta_{2}\left(I . \epsilon^{\prime}\right) P_{\mu}+\beta_{3}\left(I . \epsilon^{\prime}\right) k_{\mu}
\end{aligned}
$$

$M_{\mu}=<\gamma \chi_{c 0}\left|J_{\mu}\right| 0>\quad$ (Amplitude for $\gamma^{*} \rightarrow$ $\gamma \chi_{c 0}$)

Amplitude, $M_{f i}$ is finally expressed
as,
$M_{f i}=i\left[\bar{v}^{(s 2)}\left(\bar{p}_{2}\right) \gamma_{\mu} u^{(s 1)}\left(\bar{p}_{1}\right)\right]\left[\beta_{1} \epsilon_{\mu}^{\prime}+\beta_{2}\left(I . \epsilon^{\prime}\right) P_{\mu}+\beta_{3}\left(I . \epsilon^{\prime}\right) k_{\mu}\right]$
$\beta_{1}=\frac{8 e e_{Q}^{2} N_{S}}{M^{4} S} \int \frac{d^{3} \hat{q}}{(2 \pi)^{3}} \phi_{S}(\hat{q})\left(\alpha_{1}+\alpha_{4} \hat{q}^{2}\right) ;$
$\beta_{2}=\frac{8 e e_{Q}^{2} N_{S}}{M^{4} S} \int \frac{d^{3} \hat{q}}{(2 \pi)^{3}} \phi_{S}(\hat{q})|\hat{q}| \alpha_{2} ;$
$\beta_{3}=\frac{8 e e_{Q}^{2} N_{S}}{M^{4} S} \int \frac{d^{3} \hat{q}}{(2 \pi)^{3}} \phi_{S}(\hat{q})|\hat{q}| \alpha_{3}$,

$$
\left.\left|\bar{M}_{f i}\right|^{2}=\left[2 \beta_{1}^{2}\left(-s+3 m_{e}^{2}\right)-\frac{1}{2} \beta_{3}^{2} s^{2}\left(1-\cos ^{2} \theta\right)\right]\right]
$$

$$
\sigma=\frac{1}{32 \pi^{2} s^{3 / 2}}\left|\vec{P}^{\prime}\right| \int d \Omega^{\prime}\left|\bar{M}_{f i}\right|^{2} \text {. (total cross section for } e^{-} e^{+} \rightarrow \gamma^{*} \rightarrow \gamma \chi_{c 0} \text { in center-of-mass }
$$

with $\left|\overrightarrow{P^{\prime}}\right|=\frac{s-M^{2}}{\sqrt{s}}$
$\sigma\left(e^{+} e^{-} \rightarrow \gamma \chi_{c 0}(1 P)\right)=1.352 \mathrm{fb} \quad\left(\beta_{1}=-5.51 \times 10^{-6} \mathrm{GeV}^{-1}, \quad \beta_{3}=-2.054 \times 10^{-6} \mathrm{GeV}^{-2}\right)$
Exp. $=-20.0_{-111.0}^{+122.3} \mathrm{fb}[$ [S. Jia et al (Belle Collaboration), PRD98 (2018)]

$$
\sigma\left(e^{+} e^{-} \rightarrow \gamma \chi_{c 0}(2 P)\right)=0.602 \mathrm{fb}\left(\beta_{1}=-1.664 \times 10^{-6} \mathrm{GeV}^{-3}, \quad \beta_{3}=3.686 \times 10^{-6} \mathrm{GeV}^{-3}\right)
$$

Other Models:
$\sigma\left(e^{+} e^{-} \rightarrow \gamma \chi_{c 0}(1 P)\right)=3.11_{-0.94}^{+1.05} \mathrm{fb}$ [Chung, JHEP 09, 195 (2021)]
$\sigma\left(e^{+} e^{-} \rightarrow \gamma \chi_{c 0}(1 P)\right)=1.885 \mathrm{fb} \quad$ [Chen, Wu, Sun, Wang, Shen, PRD88, 074021 (2013)]

$$
M_{f i}^{1}=-i e e_{Q}^{2}\left[\bar{v}^{(s 2)}\left(\bar{p}_{2}\right) \gamma_{\mu} u^{(s 1)}\left(\bar{p}_{1}\right)\right] \frac{-1}{s} \int \frac{d^{4} q}{(2 \pi)^{4}} \operatorname{Tr}\left[\bar{\Psi}_{A}(P, q) \xi S_{F}\left(p_{1}^{\prime}\right) \gamma_{\mu}\right]
$$

$$
\begin{aligned}
& M_{f i}=\left[\bar{v}^{s_{2}}\left(p_{2}\right) \gamma_{\mu} u^{s_{1}}\left(p_{1}\right)\right]\left[g_{2} \epsilon_{\mu \nu \alpha \beta} \epsilon_{\nu}^{\lambda} \epsilon_{\alpha}^{\lambda^{\prime}} k_{\beta}+g_{3}(I . \epsilon) \epsilon_{\mu \nu \alpha \beta} P_{\nu} \epsilon_{\alpha}^{\lambda^{\prime}} k_{\beta}\right] \\
& g_{1}=\frac{8 e e_{Q}^{2} N_{A}}{M^{4} s} \int \frac{d^{3} \hat{q}}{(2 \pi)^{3}} \phi_{A}(\hat{q})\left(\frac{1}{2} \Theta_{1}+\Omega_{1}+\Theta_{2} m+\Theta_{3} \hat{q}^{2}\right) \\
& g_{2}=\frac{8 e e_{Q}^{2} N_{A}}{M^{4} s} \int \frac{d^{3} \hat{q}}{(2 \pi)^{3}} \phi_{A}(\hat{q}) \Theta_{1} \\
& g_{3}=\frac{8 e e_{Q}^{2} N_{A}}{M^{4} s} \int \frac{d^{3} \hat{q}}{(2 \pi)^{3}} \phi_{A}(\hat{q})|\hat{q}| \Theta_{3}
\end{aligned}
$$

$$
\sigma=\frac{1}{32 \pi^{2} s^{3 / 2}}\left|\vec{P}^{\prime}\right| \int d \Omega^{\prime}\left|\bar{M}_{f i}\right|^{2}, \begin{aligned}
& \sigma\left(e^{-} e^{+} \rightarrow \gamma^{*} \rightarrow \gamma \chi_{c 1}(1 P)\right)=7.389 \mathrm{fb}^{*}\left(\mathrm{~g} 2=-4.72 \times 10^{-6} \mathrm{GeV}^{-2}, \mathrm{~g} 3=2.914 \times 10^{-8} \mathrm{GeV}\right. \\
& \sigma\left(e^{+3} \rightarrow \gamma^{*} \rightarrow \gamma \chi_{c 1}(2 \mathrm{P})\right)=4.143 \mathrm{fb}^{*}\left(\mathrm{~g} 2=4.023 \times 10^{-6} \mathrm{GeV}^{-2}, \mathrm{~g} 3=-7.976 \times 10^{-8} \mathrm{GeV}^{-3}\right)
\end{aligned}
$$

$$
\sigma\left(e^{-} e^{+} \rightarrow \gamma^{*} \rightarrow \gamma \chi_{c 1}\right)=17.3_{-3.9}^{+4.2} \mathrm{fb}, \text { Belle, PRD98,092015(2018) }
$$

$$
\sigma\left(e^{-} e^{+} \rightarrow \gamma^{*} \rightarrow \gamma \chi_{c 1}\right)=10.9_{-3.4}^{+3.7} \mathrm{fb}, \text { Sang, Chen, PRD81,034028 (2010) }
$$

Cross section for $e^{-} e^{+} \rightarrow \gamma^{*} \rightarrow \gamma \boldsymbol{\eta}_{c}$

$$
\begin{aligned}
& M_{f i}=\left[\bar{v}^{s_{2}}\left(p_{2}\right) \gamma_{\mu} u^{s_{1}}\left(p_{1}\right)\right] \beta \epsilon_{\mu \nu \alpha \beta} P_{\nu} \epsilon_{\alpha}^{\lambda^{\prime}} k_{\beta} ; \\
& \beta=\frac{8 e e_{Q}^{2} N_{P}}{M^{4} s} \int \frac{d^{3} \hat{q}}{(2 \pi)^{3}} X_{2}^{\prime} \phi_{P}(\hat{q}) ; \quad \beta \text { absorbs entire momentum ir } \\
& X_{2}^{\prime}=-b_{1}^{\prime}(M-2 \omega) I_{1}^{\prime}+b_{2}^{\prime}(M+2 \omega) I_{1}^{\prime \prime} . \\
& \left|\bar{M}_{f i}\right|^{2}=\frac{1}{4} \beta^{2}\left(16 m_{e}^{2} M^{4}+4 m_{e}^{2} s^{2}+s^{3}\left(1+\cos ^{2} \theta\right)-M^{2}\left(16 m_{e}^{2} s+s^{2}\left(1+3 \cos ^{2} \theta\right)\right)\right] \\
& \sigma=\frac{1}{32 \pi^{2} s^{3 / 2}}|\vec{P}| \int d \Omega^{\prime}\left|\bar{M}_{f i}\right|^{2} \\
& \sigma\left(e^{-} e^{+} \rightarrow \gamma^{*} \rightarrow \gamma \eta_{c}\right)=45.841 \mathrm{fb} \text { [Bhatnagar, Guleria, arxiv:2206.02229[hep-ph] } \\
& \sigma\left(e^{-} e^{+} \rightarrow \gamma^{*} \rightarrow \gamma \eta_{c}\right)=11.3_{-6.6}^{+7.0} \mathrm{fb} \text { [Belle, PRD98,092015 (2018)] }
\end{aligned}
$$

Other models:
$\sigma\left(e^{-} e^{+} \rightarrow \gamma^{*} \rightarrow \gamma \eta_{c}\right)=26.2 \mathrm{fb}$ [Li, Feng, Ma, JHEP2020 (2020)] $\sigma\left(e^{-} e^{+} \rightarrow \gamma^{*} \rightarrow \gamma \eta_{c}\right)=41.6 \mathrm{fb}$ [Braguta, PRD82,074009 (2010)]

Summary

- Calculated cross sections for $e^{-} e^{+} \rightarrow \gamma^{*} \rightarrow \gamma \eta_{c}$, and $e^{-} e^{+} \rightarrow \gamma^{*} \rightarrow \gamma \chi_{c 0, c 1}$ in the framework of 4×4 BSE under covariant instantaneous ansatz at 10.6 GeV . using leading order $\sim O\left(\alpha_{e m}^{3} \alpha_{s}^{0}\right)$ diagrams in QCD.
- Reduction of amplitude to 3D form done using Covariant Instantaneous Ansatz, due to which the amplitude retains Lorentz-covariance, and is expressed in a general form in terms of form factors.
- Our results of cross sections with leading order diagrams provide a sizable contribution, which might be due to the BSE being a fully relativistic approach that incorporates: (i) Relativistic effect of quark spins, and (ii) can describe internal motion of quarks within the hadron in a relativistic covariant manner.
- However there is a wide variation in results of various models for cross sections for each of the process studied.
- Further calculations are being done on incorporations of NLO QCD corrections, and double charmonium production processes.

