Exclusive production of charmonia, bottomonia and $B_c^+B_c^-$ meson pairs

Marat Siddikov

In collaboration with Ivan Schmidt, Sebastian Andradé

This talk is partially based on materials published in

Phys. Rev. D 105, 076022 and [arXiv:2208.03266]

QNP2022 - The 9th International Conference on Quarks and Nuclear Physics 5-9 September 2022 online

Exclusive quarkonia photoproduction

Single quarkonia photoproduction

Clean probe of gluonic structure, complements inclusive data in phenomenological fits Color Dipole framework:

- probe dipole amplitude (b-dependence) Collinear factorization approach:

- probe (gluon) GPDs of the protons

(see QWG review, Eur.Phys.J. C71 (2011) 1534)

- ► Heavy mass $m_Q \gg \Lambda_{\rm QCD}$ is "natural" hard scale, wide region of applicability of perturbative treatment (up to photoproduction, $Q^2 \approx 0$)
 - -Accessible both in ep colliders and pA, AA colliders in ultraperipheral kine-

matics

Photoproduction of quarkonia pairs

$$\gamma^{(*)} + p \rightarrow M_1 + M_2 + p, \quad M_1, M_2 = J/\psi, \, \eta_c, \, \chi_c, \dots$$

- ► Can vary quantum numbers and kinematics of produced quarkonia in order to disentangle effects due to wave function from target-related effects \Rightarrow much more detailed information about the target (parton distributions, dipole amplitudes at $x \ll 1$)
- ► Cross-sections within reach of EIC, JLab@24 GeV, UPC@LHC, LHeC, FCC

Previous studies of meson pair production

► Studies in Bjorken regime:

[PLB 475, 147; PRD 63, 114001; NPA 679, 185 ...]

$$\gamma^{(*)} + p \rightarrow M_1 + M_2 + p, \quad M_1, M_2 = \pi^{\pm}, \pi^0 \dots$$

Focused on light mesons

 \triangleright mass $M \ll Q$, twist expansion

 \rhd If $(p_{M_1}+p_{M_2})^2$ is small, contributions from feed-

down channels ($\rho \rightarrow \pi \pi$, ...)

Depend on 2-pion distribution amplitudes (poorly known as of now)

Not applicable when $M \sim Q \gg \Lambda_{
m QCD}$

► Photoproduction of heavy quarkonia:

[PRD 101, 034025; EPJC 49, 675; 73, 2335; 76, 103; 80, 806.]

- \triangleright Focused on $J/\psi J/\psi$ channel
- ▷ Is dominated by photon-photon fusion (*C*-parity)
- ho Extra photon \Rightarrow additional $\mathcal{O}\left(lpha_{
 m em}^{2}
 ight)$ -suppression in

cross-sections

Might get contributions from diagrams with odderon in *t*-channel

Our suggestion: quarkonia pairs with opposite C-parity

- ► Wide range of possible quarkonia choices: $J/\psi \eta_c$, $J/\psi \chi_c$, $\Upsilon \eta_c$...
- ▶ Hard part is dominated by 2-gluon exchange in *t*-channel,
- \Rightarrow significantly larger cross-section than for $J/\psi J/\psi$
- > Two main production mechanisms, depending on heavy flavour content:

▲□▶ ▲≣▶ 釣�?

Kinematics and choice of framework

Our main focus: Electron Ion Collider

► Typical values of variables ξ , x_B

$$x_B pprox rac{Q^2 + M_{12}^2}{Q^2 + W^2}, \qquad \xi = rac{x_B}{2 - x_B}.$$

▷In EIC kinematics, accessible x_B , Q^2 might vary significantly, depending on choice of electron-proton energy E_e , E_p (see left) -Values of x_B , $\xi \in (10^{-4}, 1)$

ightarrow Dominant contribution (from spectrum of equivalent photons): $Q^2 \approx 0 \; (Q^2 \ll M_Q^2)$

Choice of framework:

► For $x_B, \xi \ll 1$ saturation effects are important, color dipole description is a natural choice.

–Collinear factorization (and similar) unreliable due to large NLO corrections ($\sim \ln x_B)$, lack of saturation effects

 For x_B, ξ ≥ 0.01...0.1 collinear factorization is a natural choice -eikonal-based description used in small-x approaches might be unreliable

Evaluations in collinear factorization framework

 $\begin{array}{l} \blacktriangleright \quad \underline{\text{Bjorken regime } (Q^2, p \cdot q \gg M_i^2, |t|)} \\ \hline \text{Evaluation straightforward, amplitude:} \quad \mathcal{A} \sim \int dx \, F_g^{(a)} \left(x, \xi, t \right) C^{(a)} \left(x, \xi \right), \\ F_g^{(a)} = \left\{ H_g, E_g, \tilde{H}_g, \tilde{E}_g \right\} \end{array}$

Full expression for $C(x,\xi)$ is too lengthy, has a structure

$$C(x,\xi) = \sum_{\pm} \frac{N_{\pm}(x,\xi)}{(x \mp \xi \pm i0)^n}, \ n \lesssim 3$$

where functions $N_{\pm}\left(x,\,\xi
ight)$ remain finite for $x
ightarrow\pm\xi$

ightarrowBehaviour near points $x=\pm\xi$ signals potential breakdown of collinear factorization

- Similar singularities observed for dijet production [PRL 128 (2022), 182002]

- -need to take into account transverse momenta [EPJC 74, 2725 (2014)] *Effective regularization: $|k_{\perp}^2/Q^2|$
- ▶ Caution: ▷ Presence of large scale M²₁₂ ≳ (M_{J/ψ} + M_{ηc})² ~ 36 GeV²
 ▷ Cross-section is small, and decreases at least as ~ 1/Q⁶
 ⇒ For Q² ≫ M²₁₂ get extremely tiny numbers, "pure" Bjorken regime is difficult to achieve from experimental point of view

Evaluations in collinear factorization framework (II)

Beyond Bjorken limit

Hierarchy of scales:

$$\underbrace{\underline{M_{N},\sqrt{|t|},|p_{\perp}|}_{\sim \Lambda^{-1} \approx 0} \ll \underbrace{\underline{Q}, \underline{M_{J/\psi}, M_{\eta_{c}}}_{\sim \Lambda^{0}} \ll \underbrace{p^{+}, q^{-}, W_{\gamma p}}_{\sim \Lambda^{1}}$$

$$\alpha_s(m_c), \alpha_s(Q) \ll 1$$

where $\Lambda \to \infty$ is some hard scale. Keep only the leading order in Λ for simplicity – Reasonable for EIC, LHeC, FCC-he kinematics

- Subtle point: in back-to-back kinematics no suppression if $p_{\perp}^{J/\psi} \approx -p_{\perp}^{\eta_c}$:
 - * GPD is sensitive only to $|t|\approx \left(\pmb{p}_{\perp}^{J/\psi}+\pmb{p}_{\perp}^{\eta_c}\right)^2$

 * p_{\perp} is disregarded in coef. functions in collinear factorization

 $\Rightarrow \mbox{Should}$ be careful with observables which might get contributions from this region

Structure function $C(x, \xi)$:

$$C(x,\xi) = \sum_{\pm} \frac{\tilde{N}_{\pm}(x,\xi)}{x \mp \xi \pm i0}$$

where $ilde{N}_{\pm}\left(x,\,\xi
ight)$ are finite for |x|<1

Caution: Evaluation done at LO.

- ▷ At higher orders (NLO, ...) large contributions due to BFKL logs.
 - Important if $x_B \sim M_{12}^2/W^2 \ll 1$,
 - Explicit evaluation of all those

corrections is not feasible.

- Photoproduction @very high energy: $\xi \approx M_{J/\psi}^2/W_{\gamma\rho}^2 \approx 0$, probe GPD moments (form factors) $R_n(t) = \int dx \, x^n H_g(x, 0, t), \quad n \gtrsim -1$

Results in collinear factorization

- ► Use Kroll-Goloskokov GPD for gluons \triangleright In $ep \rightarrow ep \eta_c J/\psi$ cross-section there is $\sim 1/Q^2$ from leptonic part, so cross-section is dominated by small-Qphotons
 - -Consider instead cross-section of

 $\gamma^* p \rightarrow p \, \eta_c \, J/\psi$ subprocess: -Consider normalized ratio

 $R_Q \equiv \frac{d\sigma(Q, ...)/d\Omega}{d\sigma(Q = 0, ...)/d\Omega}$

-values of $d\sigma$ depends on $y_a, \boldsymbol{p}_{a\perp}$ -for R_Q dependence largely cancels

▶ The Q^2 -dependence is controlled by

$$M_{12} = \sqrt{\left(p_{J/\psi} + p_{\eta_c}
ight)^2} \gtrsim \left(M_{J/\psi} + M_{\eta_c}
ight)$$

-very mild dependence for
$$Q^2 \lesssim M_{12}^2$$

- $R_Q(Q) \sim 1/Q^6$ for $Q^2 \gg M_{12}^2$

Results in collinear factorization (II)


```
< □ > < Ξ > < < <</li>
```

 $y = q \cdot p/k \cdot p = \nu/E_e$ approaches

unity

Framework for evaluations (II)

Color Dipole approach

 \triangleright Valid at high energies (small- $x, \xi \ll 1$)

▷ Based on eikonal picture in the target rest frame
 ▷ Replaces individual partons ⇒ parton showers
 ▷ Interaction with target is described by (universal) dipole amplitude, which:

- satisfies Balitsky-Kovchegov equation
- $\ {\rm effectively}$ resums the fan-like diagrams as

shown in the Figure

Interactions of shower with heavy quarks is still suppressed by $\alpha_s(m_Q)$:

Eikonal picture: factorize amplitude into WFs and dipole amplitudes in config. space

-WFs from potential models

Color dipole vs. collinear factorization approach

► Use Kroll-Goloskokov GPD for gluons, *b*-CGC for color dipole amplitude

*y*₁=*y*₂

At positive $y_1, y_2 > 0$:

-the shape of rapidity dependence is similar

-numerically predictions for cross-section differ by a factor of 2.

► At negative $y_1, y_2 < 0$:

-the shape of rapidity dependence is completely different

-approach the kinematics $x_B \gtrsim 10^{-2}$, where dipole model is less reliable.

< ≣ > 9Q@

Analysis of cross-sections

► $J/\psi \eta_c$ has the largest cross-section, dominated by contributions of "type-A" diagrams, "type-B" is strongly suppressed

 \Rightarrow Important for understanding processes,

which get contributions only from "type-*B*". \triangleright Strong p_T -dependence $\sim 1/p_T^n$. Dominant contribution from $p_T \lesssim 1 \text{ GeV}$.

- \triangleright positive in direction of $e/\gamma^{(*)}$
- $\,\vartriangleright\,$ negative in direction of proton

▷ For *ep* suppression at very forward direction due to leptonic prefactor
 ▷ For other colliders (FCC-he, LHeC) predictions are similar

Azimuthal dependence

 $\bar{Q} \bigcirc \frac{r}{2} \bigcirc Q$

- ► Can study dependence on azimuthal angle ϕ between $\boldsymbol{p}_{\perp}^{J/\psi}$ and $\boldsymbol{p}_{\perp}^{\eta_c}$ ► Motivation:
 - -might be used to study dependence on angle φ between color dipole orientation and impact parameter

-Might be incompatible with JIMWLK [PRD 99 (2019) 7, 074004]

Modern expectations:
 Dependence is mild:

$$N(x, |\boldsymbol{r}|, |\boldsymbol{b}|) = v_0(1 + v_2 \cos 2\varphi)$$

 $-v_0$ is taken from coventional parametrizations $-v_2 \ll 1$ is a small phenomenological parameter $-v_2$ might be accessed in dijet production

<□> < ≣> < <</p>

Azimuthal dependence

▶ The dependence on ϕ has a peak at $\phi = \pi$ (back-to-back kinematics):

 \triangleright Minimizes momentum transfer to proton at fixed $|p_{\perp}^{J/\psi}|$ and $|p_{\perp}^{\eta_c}|$:

 $|t| \approx |p_{\perp}^{J/\psi}|^2 + |p_{\perp}^{\eta_c}|^2 - 2|p_{\perp}^{J/\psi}||p_{\perp}^{\eta_c}|\cos\phi$

 $ightarrow \mathcal{R}(\phi)$ is cross-section normalized to 1 at peak $(\phi = \pi)$ to eliminate rapidity dependent factors, integrated over $\left| p_{\perp}^{J/\psi} \right|$, $\left| p_{\perp}^{\eta_c} \right|$ to improve sensitivity -changes \gtrsim an order of magnitude, whereas v_2 is just a few % effect

- $\triangleright \frac{\text{Suggestion: study } \mathcal{G}(\phi) = \sqrt{\mathcal{R}(\phi)\mathcal{R}(\pi \phi)} \text{ instead of } \mathcal{R}(\phi) \\ \text{ At small } |t| \text{ cross-section } d\sigma \sim e^{Bt} \text{, so } \phi \text{-dependence due to } t(\phi) \\ \text{ (almost) cancels.}$
 - \Rightarrow Sensitivity to v_2 is much stronger

Predictions for quarkonia with *b*-mesons

- Bottomonia-bottomonia pairs (e.g. $\Upsilon(1S)\eta_b$) are similar to all-charm; numerically have much smaller cross-section
- ► Mixed pairs are more interesting, probe subsets of diagrams:

Predictions for quarkonia with *b*-mesons (II)

► Charmonia-Bottomonia pairs are produced

▶ Qualitatively similar behaviour for p_T , ϕ , y-dependence.

► Suppression with mass $\sim (\Lambda/\mu_1)^{2n} (\Lambda/\mu_2)^{2n}$, where μ_i is the reduced mass of the $\bar{Q}Q$ pair in mesons M_1, M_2 \triangleright For $\Upsilon(1S)\eta_c$ cross-section is much smaller than for $B_c^+B_c^-$ since it gets contribution only from "small" type-*B* diagrams

Studies in ultraperipheral pp and pA collisions @LHC

Qualitatively the same behavior as for ep (see our publication for more details)_

Our mechanism $(J/\psi \eta_c)$ vs. $J/\psi J/\psi$ production

► $J/\psi J/\psi$ proceeds via $\gamma\gamma \rightarrow J/\psi J/\psi$ subprocess, extra suppression ~ $\mathcal{O}(\alpha_{em}^2)$ > Extra photon⇒additional $\mathcal{O}(\alpha_{em}^2)$ suppression in cross-sections

► Comparison with predictions from [PRD 101 (2020) no.3, 034025] :

► Cross-section of suggested mechanism is larger by 2 orders of magnitude (not by factor ~ O (α⁻²_{em}) ~ 10⁴ as naively expected)

Summary

- We suggest to study exclusive production of opposite C-parity quarkonia $(J/\psi \eta_c, J/\psi \chi_c...)$ as a complementary source of information about the gluonic field of the target
 - ▶ Access to GPD H_g in collinear factorization approach
 - ► Access to dipole amplitude in color dipole approach

- The cross-section are large enough for experimental studies, at least for charmonia pairs
 - ▶ Bottomonia and B⁺_cB⁻_c pairs have smaller cross-sections, but are also theoretically interesting
 - ► The quarkonia pairs are produced predominantly with small and oppositely directed transverse momenta ($|p_{\perp}| \leq 1 \, \text{GeV}$), small rapidity difference

Summary

- We suggest to study exclusive production of opposite C-parity quarkonia $(J/\psi \eta_c, J/\psi \chi_c...)$ as a complementary source of information about the gluonic field of the target
 - ▶ Access to GPD H_g in collinear factorization approach
 - ► Access to dipole amplitude in color dipole approach

- The cross-section are large enough for experimental studies, at least for charmonia pairs
 - ▶ Bottomonia and B⁺_cB⁻_c pairs have smaller cross-sections, but are also theoretically interesting
 - ► The quarkonia pairs are produced predominantly with small and oppositely directed transverse momenta ($|p_{\perp}| \leq 1 \, \text{GeV}$), small rapidity difference

Thank You for your attention!

Appendix I: Amplitude in color dipole picture

Eikonal picture:

► *t*-channel interactions⇒multiplicative factors in config. space

 $\Rightarrow \mbox{The amplitude factorizes into wave functions with a linear combination}$

of color singlet dipole amplitudes

$$\mathcal{A} \sim \prod_{s=1} \left(\int d\alpha_s d^2 r_s \right) \sum_{ijklm} \psi_{M_1} \left(\alpha_{ij}, \mathbf{r}_i - \mathbf{r}_j \right) \psi_{M_2} \left(\alpha_{kl}, \mathbf{r}_k - \mathbf{r}_\ell \right) \otimes \\ \otimes c_m \mathcal{N} \left(x, \mathbf{r}_m, \mathbf{b}_m \right) \psi_{22222}^{(\gamma)} \left(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3, \mathbf{r}_4 \right) e^{i \left(\mathbf{p}_T^{(1)} \cdot \mathbf{r}_{ij} + \mathbf{p}_T^{(2)} \cdot \mathbf{r}_{k\ell} \right)}$$

where \mathbf{r}_m , \mathbf{b}_m are some linear combinations of $r_1...r_4$, and c_m are color factors

- ► The wave function $\psi_{QQQQ}^{(\gamma)}$ is evaluated perturbatively, since $\alpha_s (m_c) \ll 1$
- ► The quarkonia WFs ψ_{M_1}, ψ_{M_2} are evaluated in potential models; comparable with LC-Gauss for J/ψ wave function
 - ho In general results are close to each other, discrepancy $\sim lpha_{s}$ (m_c) $\sim 1/3$ (see left)