Heavy quarkonia light-front wavefunctions on a small-basis

Guangyao Chen
Jacksonville University

In collaboration with: James Vary, Meijian Li, Yang Li, and Tuomas Lappi

Introduction

Goals: simple-function charmonium LFWFs with few parameters!

- i. Approximation to QCD.
- ii. Retain more symetries.
- iii. Matching the NR limit.
- iv. Emphsis on decay width.
- We designed LFWFs for $\eta_{\rm c}$, J/ψ , ψ' and ψ (3770).

Basis functions

LF holography/Basis LF Quantization Hamiltonian.

$$H_0 = \frac{\vec{k}_{\perp}^2 + m_q^2}{x} + \frac{\vec{k}_{\perp}^2 + m_{\bar{q}}^2}{1 - x} + \kappa^4 x (1 - x) r_{\perp}^2 - \frac{\kappa^4}{(m_q + m_{\bar{q}})^2} \partial_x (x (1 - x) \partial_x) ,$$

- i. Two parameters: m_q and κ .
- One-gluon interactions were treated perturbatively.
- The basis function representation.

$$\tilde{\psi}_{ss'/h}^{(m_j)}(\vec{r}_{\perp}, x) = \sqrt{x(1-x)} \sum_{n,m,l} \psi_h^{(m_j)}(n, m, l, s, s')$$

$$\tilde{\phi}_{nm}(\sqrt{x(1-x)}\vec{r}_{\perp})\chi_l(x) ,$$

Teramond and Brodsky, '09

Li et al., PLB 758, 118 (2016)

Basis functions

Small basis for charmonium states:

$$\psi_{\text{LF-1}S} = \psi_{0,0,0} .$$

$$\psi_{\text{LF-1}P0} = \psi_{0,0,1} ,$$

$$\psi_{\text{LF-1}P\pm 1} = -\psi_{0,\pm 1,0} .$$

$$\psi_{\text{LF-2}S} = \sqrt{\frac{2}{3}}\psi_{1,0,0} - \sqrt{\frac{1}{3}}\psi_{0,0,2} .$$

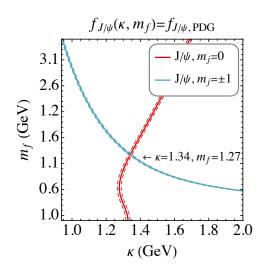
$$\psi_{\text{LF-1}D0} = \sqrt{\frac{1}{3}}\psi_{1,0,0} + \sqrt{\frac{2}{3}}\psi_{0,0,2} ,$$

$$\psi_{\text{LF-1}D\pm 1} = -\psi_{0,\pm 1,1} ,$$

$$\psi_{\text{LF-1}D\pm 2} = \psi_{0,\pm 2,0} .$$

J/ψ as a 1⁻⁻ state

- We assume a 100% LF-1S state for J/ψ .
- Matching J/ψ decay constant to the PDG value:



• We fix m_c and κ using the J/ψ decay constant.

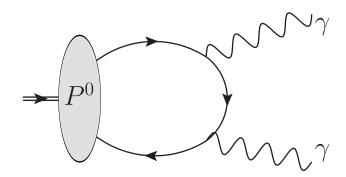
Li et al., arXiv: 2002.09757

$\eta_{\rm c}$ as a 0⁻⁺ state

• η_c predominantly LF-1S+LF-2S and LF-1P.

$$\psi_{\eta_c} = C_{\eta_c,1S} \psi_{\text{LF}-1S,0-+} + C_{\eta_c,2S} \psi_{\text{LF}-2S,0-+} + C_{\eta_c,1P} \psi_{\text{LF}-1P,0-+} .$$

• Basis coeffecients are determined using the diphoton decay width $\Gamma(\eta_c \rightarrow \gamma \gamma)$.

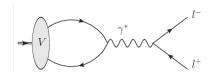


ψ' as a 1⁻⁻ state

• A mix of LF-1S and LF-2S states for ψ' .

$$\begin{split} \psi_{\psi'}^{(m_{j}=0)} &= C_{\psi',1S}^{(m_{j}=0)} \psi_{\text{LF}-1S,1--}^{(m_{j}=0)} + C_{\psi',2S}^{(m_{j}=0)} \psi_{\text{LF}-2S,1--}^{(m_{j}=0)} \,, \\ \psi_{\psi'}^{(m_{j}=1)} &= C_{\psi',1S}^{(m_{j}=1)} \psi_{\text{LF}-1S,1--}^{(m_{j}=1)} + C_{\psi',2S}^{(m_{j}=1)} \psi_{\text{LF}-2S,1--}^{(m_{j}=1)} \,, \\ \psi_{\psi'}^{(m_{j}=-1)} &= C_{\psi',1S}^{(m_{j}=-1)} \psi_{\text{LF}-1S,1--}^{(m_{j}=-1)} + C_{\psi',2S}^{(m_{j}=-1)} \psi_{\text{LF}-2S,1--}^{(m_{j}=-1)} \,. \end{split}$$

 Basis coeffecients are determined using the dilepton decay constant.



$$|f_{\mathcal{V}}|_{m_j=0}| = |f_{\mathcal{V}}|_{m_j=\pm 1}| = f_{\mathcal{V},\text{experiment}}$$
.

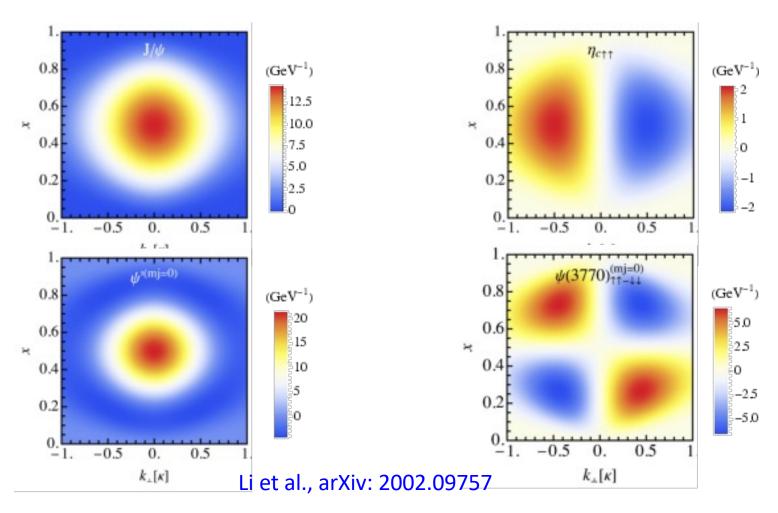
ψ (3770) as a 1⁻⁻ state

• A mix of LF-1S, LF-2S, LF-1D states for ψ (3770), LF-1D is dominating.

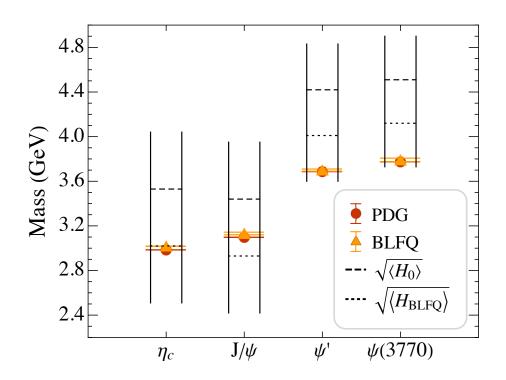
$$\psi_{\psi(3770)}^{(m_{j}=0)} = C_{\psi(3770),1S}^{(m_{j}=0)} \psi_{\text{LF}-1S,1--}^{(m_{j}=0)} + C_{\psi(3770),2S}^{(m_{j}=0)} \psi_{\text{LF}-2S,1--}^{(m_{j}=0)} + C_{\psi(3770),1D}^{(m_{j}=0)} \psi_{\text{LF}-1D,1--}^{(m_{j}=0)},$$

• Basis coeffecients are determined by requiring orthogonality between ψ' and $\psi(3770)$.

LFWFs by design



The mass spectrum



$$\begin{split} \left(\tilde{M}_{h}^{(m_{j})}\right)^{2} &= \sum_{n,m,l,s,\bar{s}} \sum_{n',m',l',s',\bar{s}'} \psi_{h}^{(m_{j})}(n,m,l,s,\bar{s}) \\ &\times \psi_{h}^{(m_{j})*}(n',m',l',s',\bar{s}') \\ &\times \left[M_{n,m,l}^{2} \delta_{n,n'} \delta_{m,m'} \delta_{l,l'} \delta_{s,s'} \delta_{\bar{s},\bar{s}'} \\ &+ \left\langle \beta_{n',m',l',s',\bar{s}'} \right| \Delta H \left| \beta_{n,m,l,s,\bar{s}} \right\rangle \right]. \end{split}$$

$$V_{\rm OGE} = -\frac{C_F 4\pi\alpha_s(q^2)}{q^2} \bar{u}_{s'}(k') \gamma_\mu u_s(k) \bar{v}_{\bar{s}}(\bar{k}) \gamma^\mu v_{\bar{s}'}(\bar{k}') \; , \label{eq:Voge}$$

Masses calculated from small-basis LFWFs should be regarded as Estimated!

Li et al., arXiv: 2002.09757 Li et al., PLB 758, 118 (2016)

The charge radii

 Defined in terms of the slope of the charge form factor at zero momentum transfer.

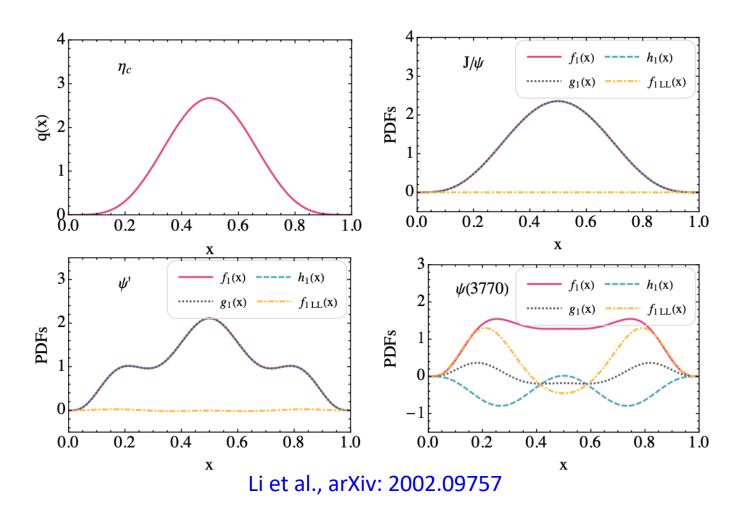
$$\langle r_h^2 \rangle = -6 \frac{\partial}{\partial Q^2} G_0(Q^2) \Big|_{Q \to 0} .$$

(fm ²)	$\langle r_{\eta_c}^2 angle$	$\langle r_{J/\psi}^2 angle$	$\langle r_{\psi'}^2 angle$	$\langle r_{\psi(3770)}^2 \rangle$
this work	0.098	0.046	0.154	0.138
BLFQ [27]	0.029(1)	0.0402(2)	0.13(0)	0.13(0)

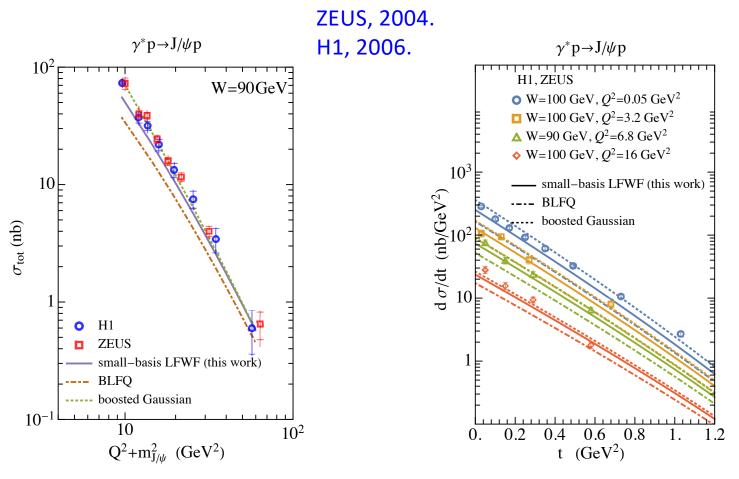
- J/ψ , ψ' and ψ (3770) radii consistent with BLFQ calculations.
- A large size η_c !

Li et al., arXiv: 2002.09757 Li et al., PLB 758, 118 (2016)

Parton Distribution Functions (PDFs)



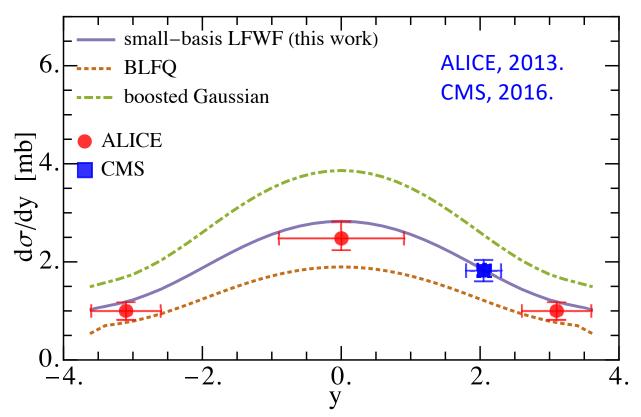
J/ψ production at HERA



GC et al., PLB 769, 477, 2017 GC et al., PRC 100, 025208, 2019 Li et al., arXiv: 2002.09757

J/ψ production at LHC

 $Pb+Pb\rightarrow Pb+Pb+J/\Psi \sqrt{s_{NN}} = 2.76 TeV$



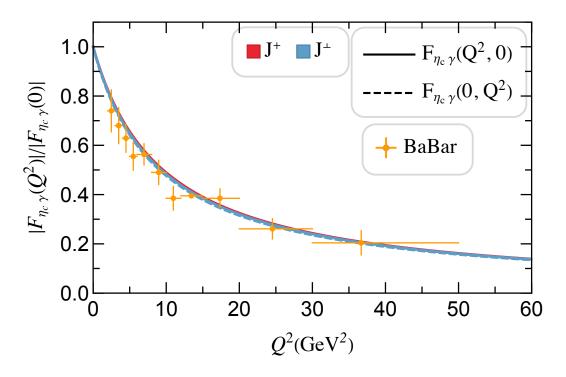
GC et al., PLB 769, 477, 2017

GC et al., PRC 100, 025208, 2019

Li et al., arXiv: 2002.09757

14

$\gamma^*\gamma \rightarrow \eta_c$ Transition Form Factor



$$\begin{split} I^{\mu}_{\lambda_1}(P,q_1) &\equiv \langle \gamma^*(q_1,\lambda_1)| \, J^{\mu}(0) \, | \mathcal{P}(P) \rangle \\ &= -i e^2 F_{\mathcal{P}\gamma}(Q_1^2,Q_2^2) \epsilon^{\mu\alpha\beta\sigma} P_{\alpha} q_{1\beta} \epsilon_{\sigma,\lambda_1}^*(q_1) \; , \end{split}$$

BaBar, 2010.

Li et al., arXiv: 2002.09757

Summary

- η_c , J/ψ , ψ' and ψ (3770) LFWFs in two approaches: BLFQ (HPC), small-basis (analytical).
- Physical observables calculated:
- Masses and charge radii.
- ii. PDFs.
- iii. J/ψ production at HERA and LHC.
- iv. $\eta_{\rm c}$ diphoton transition form factor.
- Outlook: analytical LFWFs with simultaneous global analysis.

Thank you!

- Collaborators: Meijian Li, Yang Li, Tuomas Lappi, James Vary
- This work is supported by Department of Energy, USA, and European Research Council

Backup Slides

Basis Function

Transverse:

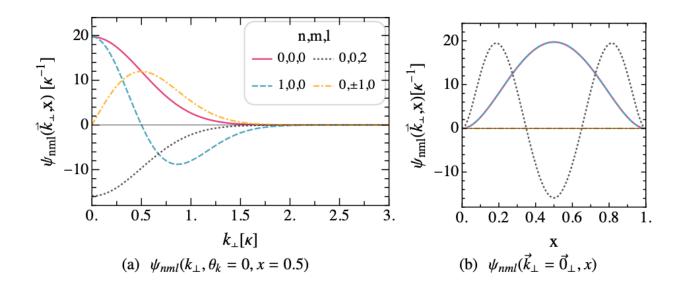
$$\phi_{nm}(\vec{k}_{\perp}) = \kappa^{-1} \sqrt{\frac{4\pi n!}{(n+|m|)!}} \left(\frac{k_{\perp}}{\kappa}\right)^{|m|} \exp(-k_{\perp}^{2}/(2\kappa^{2}))$$

$$L_{n}^{|m|}(k_{\perp}^{2}/\kappa^{2}) \exp(im\theta_{k}) ,$$

• Longitudinal:

$$\chi_l(x) = \sqrt{4\pi(2l+\alpha+\beta+1)} \sqrt{\frac{\Gamma(l+1)\Gamma(l+\alpha+\beta+1)}{\Gamma(l+\alpha+1)\Gamma(l+\beta+1)}}$$
$$x^{\beta/2} (1-x)^{\alpha/2} P_l^{(\alpha,\beta)}(2x-1) ,$$

Sample Basis Function



Mirror Parity and Chargeconjugation

TABLE I. Basis states $\psi_{nml}\sigma_{s\bar{s}}$ categorized by the mirror parity m_P according to Eq. (17).

m_j	m	$m_{\rm P} = 1$	$m_{P} = -1$
0	0	$\psi_{n,0,l}\sigma_+$	$\psi_{n,0,l}\sigma$
	±1	$rac{1}{\sqrt{2}}(\psi_{n,-1,l}\sigma_{\uparrow\uparrow}-\psi_{n,1,l}\sigma_{\downarrow\downarrow})$	$\frac{1}{\sqrt{2}}(\psi_{n,-1,l}\sigma_{\uparrow\uparrow}+\psi_{n,1,l}\sigma_{\downarrow\downarrow})$
	0	$\psi_{n,0,l}\sigma_{\uparrow\uparrow},\psi_{n,0,l}\sigma_{\downarrow\downarrow}$	$\psi_{n,0,l}\sigma_{\uparrow\uparrow}, -\psi_{n,0,l}\sigma_{\downarrow\downarrow}$
1, -1	±1	$\psi_{n,1,l}\sigma_{\pm},\mp\psi_{n,-1,l}\sigma_{\pm}$	$\psi_{n,1,l}\sigma_{\pm}$, $\pm\psi_{n,-1,l}\sigma_{\pm}$
7-	±2	$\psi_{n,2,l}\sigma_{\downarrow\downarrow},\psi_{n,-2,l}\sigma_{\uparrow\uparrow}$	$\psi_{n,2,l}\sigma_{\downarrow\downarrow}, -\psi_{n,-2,l}\sigma_{\uparrow\uparrow}$

TABLE II. Basis states $\psi_{nml}\sigma_{s\bar{s}}$ categorized by the charge conjugation C according to Eq. (18).

m+l	C = 1	C = -1
even	$\psi_{n,m,l}\sigma$	$\psi_{n,m,l}\sigma_+,\psi_{n,m,l}\sigma_{\uparrow\uparrow},\psi_{n,m,l}\sigma_{\downarrow\downarrow}$
odd	$\psi_{n,m,l}\sigma_+,\psi_{n,m,l}\sigma_{\uparrow\uparrow},\psi_{n,m,l}\sigma_{\downarrow\downarrow}$	$\psi_{n,m,l}\sigma$

J/ψ Decay Constant

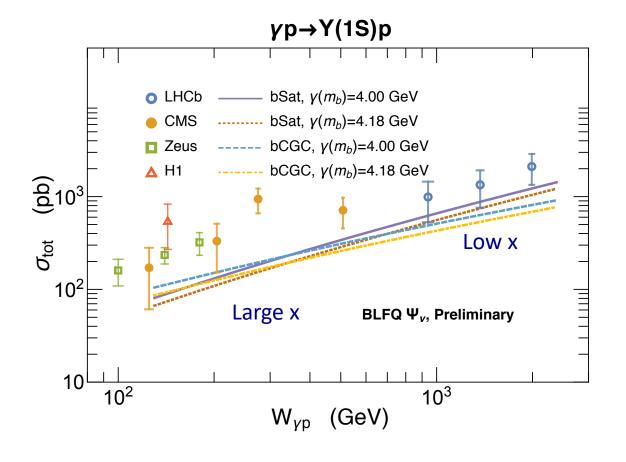
$$f_{V}|_{m_{j}=0} = \sqrt{2N_{c}} \int_{0}^{1} \frac{\mathrm{d}x}{\sqrt{x(1-x)}} \int \frac{\mathrm{d}^{2}k_{\perp}}{(2\pi)^{3}}$$

$$\psi_{+/V}^{(m_{j}=0)}(\vec{k}_{\perp}, x) ,$$

$$f_{\mathcal{V}}|_{m_{j}=1} = \frac{\sqrt{N_{c}}}{2m_{\mathcal{V}}} \int_{0}^{1} \frac{\mathrm{d}x}{[x(1-x)]^{3/2}} \int \frac{\mathrm{d}^{2}k_{\perp}}{(2\pi)^{3}} \left\{ k^{L}[(1-2x)\psi_{+/\mathcal{V}}^{(m_{j}=1)}(\vec{k}_{\perp},x) - \psi_{-/\mathcal{V}}^{(m_{j}=1)}(\vec{k}_{\perp},x)] - \sqrt{2}m_{f}\psi_{\uparrow\uparrow/\mathcal{V}}^{(m_{j}=1)}(\vec{k}_{\perp},x) \right\},$$

$\Upsilon(1s)$ in γp at LHC

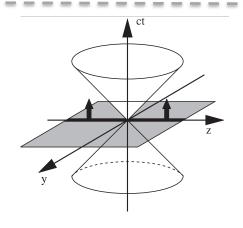
GC et al., in preparation



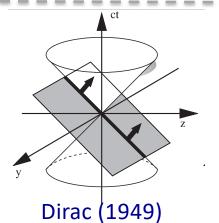
ZEUS, 2009. H1, 2012. CMS, 2016. LHCb, 2016.

$$x \sim \frac{M_V^2}{W_{\gamma p}^2}$$

Equal time vs. Light-front Quantization



$$t \equiv x^+ = x^0 + x^3$$



$$i\frac{\partial}{\partial t}|\varphi(t)\rangle = H|\varphi(t)\rangle$$

$$H = P^0$$

$$i\frac{\partial}{\partial t}|\varphi(t)\rangle = H|\varphi(t)\rangle$$
 $i\frac{\partial}{\partial x^{+}}|\varphi(x^{+})\rangle = \frac{1}{2}P^{-}|\varphi(x^{+})\rangle$

$$P^- = P^0 - P^3$$

Basis Light-front Quantization

☐ Finding spectrum using light-front Hamiltonian

$$H_{LF}|\psi_h\rangle = M_h^2|\psi_h\rangle, \quad (H_{LF} \equiv P^+\hat{P}_{LF}^- - \vec{P}_\perp^2)$$

- ☐ Adopting basis according to the symmetry of system
- ☐Advantages:
- Boost Invariant Amplitude
- Parton Interpretation
- Fully relativistic
- Moore's Law

General Procedures of BLFQ

☐ Derive LF-Hamiltonian from Lagrangian
$egin{array}{c} \Box \mbox{Construct basis states} & lpha angle & \mbox{, and truncation} \\ & \mbox{scheme} & \end{array}$
☐ Evaluate Hamiltonian in the basis
☐ Diagonalize Hamiltonian and obtain its eigen states and their LF-amplitudes
☐ Evaluate observables using LF-amplitudes
□ Extrapolate to continuum limit Vary et al '10, Honkanen et al '11

Heavy Quarkonium in BLFQ

☐ Effective Hamiltonian

$$H_{\text{eff}} = \underbrace{\frac{\vec{k}_{\perp}^2 + m_q^2}{z(1-z)}}_{\text{LF kinetic energy}} + \underbrace{\kappa^4 \zeta_{\perp}^2 - \frac{\kappa^4}{4m_q^2} \partial_z \big[z(1-z) \partial_z \big]}_{\text{confinement}} - \underbrace{\frac{C_F 4\pi \alpha_s}{Q^2} \bar{u}_{s'}(k') \gamma_{\mu} u_s(k) \bar{v}_{\bar{s}}(\bar{k}) \gamma^{\mu} v_{\bar{s}'}(\bar{k}')}_{\text{one-gluon exchange}}$$

Inspired by holographic AdS/QCD.

Teramond and Brodsky, '09

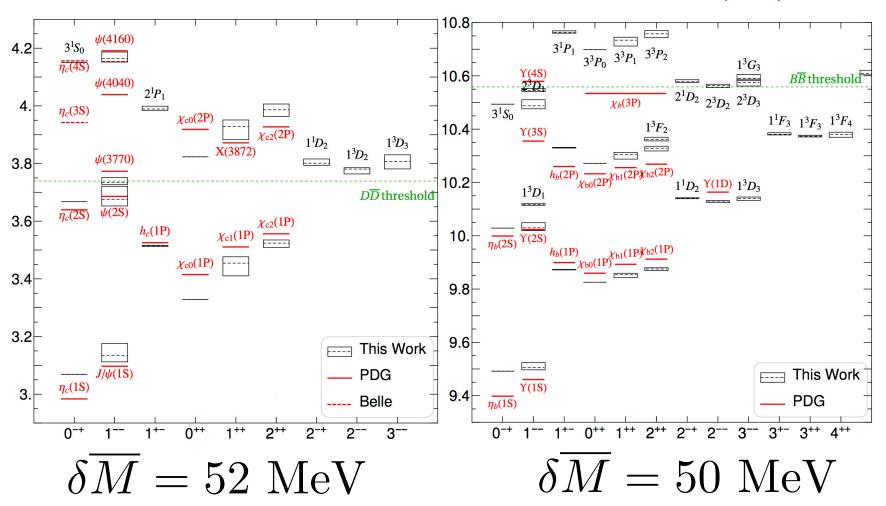
Two parameters fitted to spectra.

Li et al., PLB 758, 118 (2016)

Li et al., PRD96, 016022, (2017)

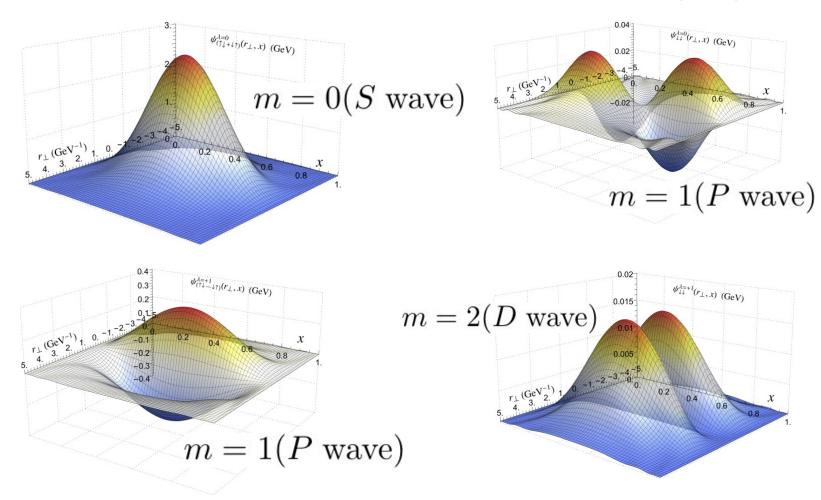
Heavy Quarkonia Spectra

Li et al., PLB 758, 118 (2016)



Visualizing LFWF

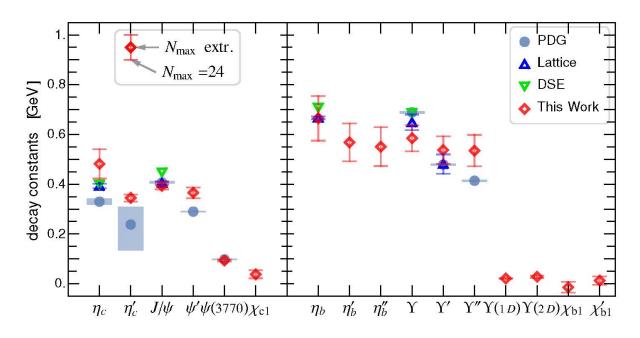
Li et al., PRD96, 016022, (2017)



BLFQ LFWF predictions

Li et al., PLB 758, 118, (2016)

☐ Decay constants



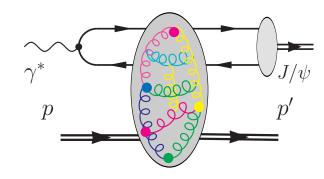
□Also predict radii and charge form factor!

Dipole picture of diffractive processes

☐ The exclusive VM production amplitude:

$$\mathcal{A}_{T,L}^{\gamma^* p \to Ep}(x, Q, \Delta) = i \int d^2 \vec{r} \int_0^1 \frac{dz}{4\pi} \int d^2 \vec{b} \, (\Psi_E^* \Psi)_{T,L}$$
$$\times e^{-i[\vec{b} - (1-z)\vec{r}] \cdot \vec{\Delta}} \, \frac{d\sigma_{q\bar{q}}}{d^2 \vec{b}}$$

- Ψ_{F} : LFWF of vector meson
- Ψ: Photon LFWF
- $\frac{d\sigma_{q\bar{q}}}{d^2\vec{b}}$: dipole cross section



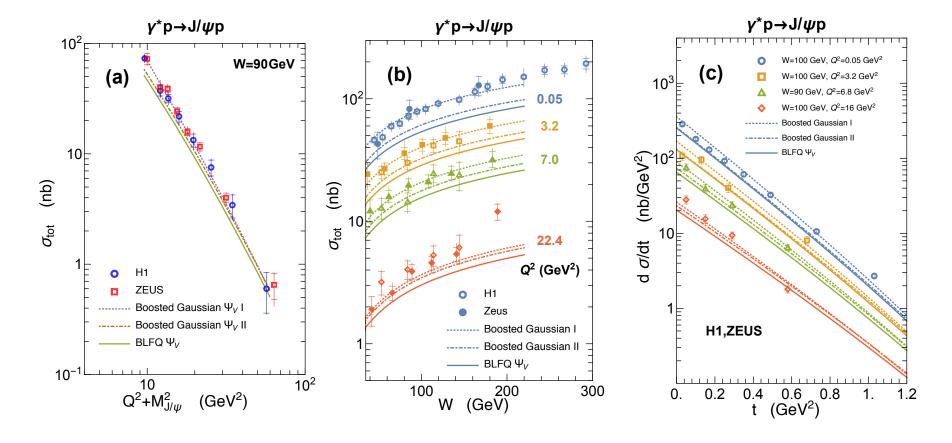
□ Description of vector meson on the Light-front is the KEY!

Golec-Biernat and Wusthoff, 1999 Kowalski and Teaney, 2001

HERA: cross section

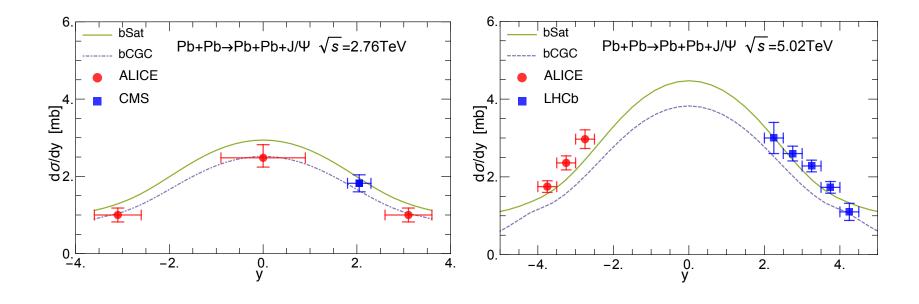
GC et al., PLB 769, 477, 2017

ZEUS, 2004. H1, 2006.



J/Ψ from Pb-Pb UPC at LHC

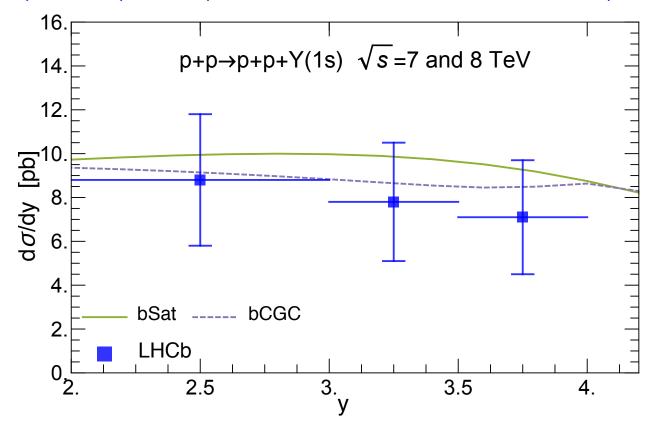
GC et al., PLB 769, 477, 2017 GC et al., PRC 100, 025208, 2019 ALICE, 2013, 2017. CMS, 2016. LHCb, 2018



$\Upsilon(1s)$ from pp UPC at LHC

GC et al., PRC 100, 025208, 2019

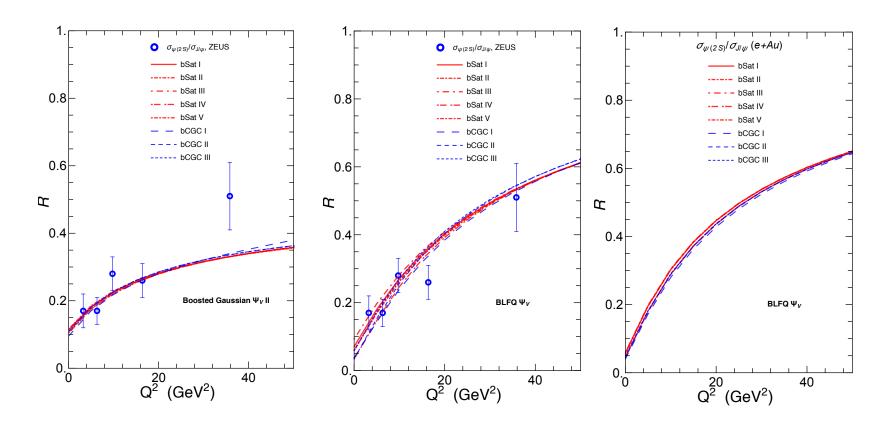
LHCb, 2015



Cross section ratio

ZEUS, 2016.

GC et al., PLB 769, 477, 2017



Cross section ratio, Upsilons

GC et al., PRC 100, 025208, 2019

