The new LHCb state X(3960) seen in $D_s^+ D_s^$ should be the same as the X(3930) seen in $D^+ D^-$

M. Bayar

Kocaeli University

9th International Conference on Quarks and Nuclear Physics (QNP2022) 07 September 2022 Collaborators: A. Feijoo, E. Oset

イロト イ押ト イヨト イヨトー

э.

- Introduction and Motivation
- Formalism
- Results
- Summary and Conclusion

イロン イ理 とく ヨン・

Introduction and Motivation

Chen Chen and Elisabetta Spadaro Norella, https://indico.cern.ch/event/1176505/ (5 July 2022)

New exotic members in Particle Zoo @ LHC

2011-01-01 2012-01-01 2013-01-01 2014-01-01 2015-01-01 2016-01-01 2017-01-01 2018-01-01 2019-01-01 2020-01-01 2021-01-01 2022-0 Date of arXiv submission

patrick.koppenburg@cern.ch 2022-07-04

イロト イポト イヨト イヨ

Introduction and Motivation

(a) The $D^+_s D^-_s$ mass distribution of the $B^+ o D^+_s D^-_s K^+$ decay (Chen

Chen and Elisabetta Spadaro Norella, https://indico.cern.ch/event/1176505/)

(b) The D^+D^- mass distribution of the $B^+ o D^+D^-K^+$ decay (R. Aaij et

al. [LHCb], Phys. Rev. D 102 (2020), 112003.)

 $\begin{aligned} J^{PC} &= 0^{++}; \ M_0 &= 3955 \pm 6 \pm 11 \ MeV; \ \Gamma_0 &= 48 \pm 17 \pm 10 \ MeV \\ J^{PC} &= 0^{++}; \ M'_0 &= 3924 \pm 2 \ MeV; \ \Gamma'_0 &= 17 \pm 5 \ MeV \\ (D_s^+ D_s^-)_{threshold} &= 3937 \ MeV \\ (D^+ D^-)_{threshold} &= 3739 \ MeV \end{aligned}$

Introduction and Motivation

• $D\bar{D}$ and $D_s^+ D_s^-$ with lighter coupled channels:

 \Rightarrow a $D\bar{D}$ bound state was found

\Rightarrow no bound state was found close to the $D_s^+ D_s^-$ threshold

D. Gamermann, E. Oset, D. Strottman and M. J. Vicente Vacas, Phys. Rev. D 76 (2007), 074016. C.

Hidalgo-Duque, J. Nieves and M. P. Valderrama, Phys. Rev. D 87 (2013) no.7, 076006.

The QCD lattice result:

⇒ a 0⁺⁺ bound state coupling strongly to $D_s^+ D_s^-$ ⇒ weakly to $D^+ D^-$ is found below the $D_s^+ D_s^-$ threshold.

S. Prelovsek, S. Collins, D. Mohler, M. Padmanath and S. Piemonte, JHEP 06 (2021), 035.

- If the $X_0(3930)$ state coupled both to D^+D^- and $D_s^+D_s^-$, that state would necessarily produce an enhancement close to threshold in the $D_s^+D_s^-$ mass distribution.
- Could explain the experimental observation without the need to introduce an extra resonance?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

The coupled channels $D\overline{D}$, I = 0 and $D_s^+ D_s^ (D^+, -D^0) (\overline{D}^0, D^-)$

$$(D\bar{D}, I=0) = \frac{1}{\sqrt{2}}(D^+D^- + D^0\bar{D}^0); D_s^+D_s^-$$

Dynamics of $D(D_s) \rightarrow \overline{D}(\overline{D}_s)$ interaction due to vector exchange:

the VPP (V = vector, P = pseudosclar) vertex

$$\mathcal{L}_{VPP} = -ig\langle [P, \partial_{\nu} P] V^{\mu} \rangle$$

$$g = \frac{M_{V}}{2f} (M_{V} \simeq 800 \text{ MeV}, f = 93 \text{ MeV})$$
(1)

where *P* and *V* are the $q_i \bar{q}_j$ matrices written in terms of *P* and *V* mesons

pseudoscalar (P) and vector (V) mesons:

$$\mathcal{L}_{VPP} = -ig\langle [P, \partial_{
u}P]V^{\mu}
angle$$

The interaction potential:

$$V_{ij} = -B_{ij}g^2(p_1 + p_3)(p_2 + p_4)$$
(4)

with

$$B = \begin{pmatrix} \frac{1}{2} \left(\frac{3}{M_{\rho}^{2}} + \frac{1}{M_{\omega}^{2}} + \frac{2}{M_{J/\Psi}^{2}} \right) & \sqrt{2} \frac{1}{M_{K^{*}}^{2}} \\ \sqrt{2} \frac{1}{M_{K^{*}}^{2}} & \left(\frac{1}{M_{\phi}^{2}} + \frac{1}{M_{J/\Psi}^{2}} \right) \end{pmatrix}.$$
 (5)

 $(p_1 + p_3)(p_2 + p_4)$, projected over *S*-wave

$$(p_1 + p_3)(p_2 + p_4) \rightarrow \frac{1}{2} \left[3s - (m_1^2 + m_2^2 + m_3^2 + m_4^2) - \frac{1}{s} (m_1^2 - m_2^2)(m_3^2 - m_4^2) \right]$$
(6)

イロト イ団ト イヨト イヨト

∃ \$\mathcal{O}\$

Bethe-Salpeter equation

$$T = [1 - VG]^{-1} V$$

Two meson loop function

$$\begin{split} \widehat{G}_{i}(\sqrt{s}) &= \frac{1}{16\pi^{2}} \left(a_{i} + Log \frac{m_{1}^{2}}{\mu^{2}} + \frac{m_{2}^{2} - m_{1}^{2} + s}{2s} Log \frac{m_{2}^{2}}{m_{1}^{2}} + \frac{q_{i}}{\sqrt{s}} \left(Log \frac{s - m_{2}^{2} + m_{1}^{2} + 2q_{i}\sqrt{s}}{-s + m_{2}^{2} - m_{1}^{2} + 2q_{i}\sqrt{s}} + Log \frac{s + m_{2}^{2} - m_{1}^{2} + 2q_{i}\sqrt{s}}{-s - m_{2}^{2} + m_{1}^{2} + 2q_{i}\sqrt{s}} \right) \end{split}$$

ヘロト 人間 とくほとう ほとう

5 DQC

The D^+D^- and $D^+_s D^-_s$ production in $B^- \to D^+D^-K^-$ and $B^- \to D^+_s D^-_s K^-$

 B^- decay via internal emission at the quark level and hadronization

The $c\bar{c}$ pair is hadronized and we have

$$c\bar{c} \rightarrow \sum_{i} c\bar{q}_{i}q_{i}\bar{c} \rightarrow \sum_{i} P_{4i}P_{i4} = D^{0}\bar{D}^{0} + D^{+}D^{-} + D^{+}_{s}D^{-}_{s}$$

= $\sqrt{2}D\bar{D} + D^{+}_{s}D^{-}_{s}$ (7)

where we have eliminated $\eta_c \eta_c$ which plays no role here.

M. Bayar

The new LHCb state X(3960) seen in $D_s^+ D_s^-$ should be the same

Formalism: The D^+D^- and $D^+_s D^-_s$ production

Production and propagation of the D^+D^- and $D_s^+D_s^-$ components through final state interaction

$$\begin{split} \tilde{t}_{D^+D^-} &= C\left(1+G_{D\bar{D}}(M_{inv})T_{D\bar{D},D\bar{D}}(M_{inv})\right.\\ &\left.+\frac{1}{\sqrt{2}}G_{D_s\bar{D}_s}(M_{inv})T_{D_s\bar{D}_s,D\bar{D}}(M_{inv})\right) \end{split}$$

$$egin{aligned} & ilde{t}_{D_{s}^{+}D_{s}^{-}} = C\left(1 + \sqrt{2}G_{Dar{D}}(M_{inv})\mathcal{T}_{Dar{D},D_{s}^{+}D_{s}^{-}}(M_{inv}) \ &+ G_{D_{s}ar{D}_{s}}(M_{inv})\mathcal{T}_{D_{s}^{+}D_{s}^{-},D_{s}^{+}D_{s}^{-}}(M_{inv})
ight) \end{aligned}$$

ヨトメヨトー

Results:

$$T = [1 - VG]^{-1} V, \qquad V_{ij} = -B_{ij}g^2(p_1 + p_3)(p_2 + p_4)$$
$$B = \begin{pmatrix} \frac{1}{2} \left(\frac{3}{M_{\rho}^2} + \frac{1}{M_{\omega}^2} + \frac{2}{M_{J/\Psi}^2} \right) & \sqrt{2}\frac{1}{M_{K^*}^2} \\ \sqrt{2}\frac{1}{M_{K^*}^2} & \left(\frac{1}{M_{\phi}^2} + \frac{1}{M_{J/\Psi}^2} \right) \end{pmatrix}.$$

If we remove non diagonal term ⇒ two states appear

- If we keep that term \rightarrow the state coupling to $D_s^+ D_s^-$ disappears
- Reducing by 0.7 the $\frac{1}{M_{K^*}^2}$ term two states appear

The reduction of the $D\bar{D}
ightarrow D_s^+ D_s^-$ transition is natural

 $\sqrt{\vec{q}^2 + m_D^2} = m_{D_s}^2$ at threshold $\Rightarrow q^2 = m_{D_s}^2 - m_D^2$ Reduction: $m_{K^*}^2 / (m_{D_s}^2 + m_{K^*}^2 - m_D^2) \simeq 0.68$

The new LHCb state X(3960) seen in $D_s^+ D_s^-$ should be the same

• $a_{D_s \overline{D}_s} = -1.58$; $\alpha = 0.7$ to get approximately $X_0(3930)$ $M_0' = 3924 \pm 2 \ MeV$; $\Gamma_0' = 17 \pm 5 \ MeV$ (LHCb, PRD102(2020)112003.)

• $a_{D\bar{D}} = -1$ to get a $D\bar{D}$ bound state around 3700 MeV

Table: Masses, widths and the couplings $|g_i|$.

	<i>M</i> [MeV]	Γ [MeV]	$ g_{ar{D}D} $ [MeV]	$ g_{ar{D}_S D_S} $ [MeV]
Pole I	3699	-	14516	5897
Pole II (X ₀ (3930))	3936	11	2858	9076

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ○ ○○○

Results: The Invarinant mass distributions

$$\begin{aligned} \frac{d \Gamma}{dM_{\text{inv}}(D^+D^-)} &= \frac{1}{(2\pi)^3} \frac{1}{4M_B^2} p_{K^-} \tilde{p}_{D^+} |\tilde{t}_{D^+D^-}|^2 \\ p_{K^-} &= \frac{\lambda^{1/2} (M_{B^-}^2, m_{K^-}^2, M_{inv}^2(D^+D^-))}{2M_{B^-}} \\ \tilde{p}_{D^+} &= \frac{\lambda^{1/2} (M_{inv}^2(D^+D^-), m_{D^+}^2, m_{D^-}^2)}{2M_{inv}(D^+D^-)} \\ \frac{d \Gamma}{dM_{\text{inv}}(D_s^+D_s^-)} &= \frac{1}{(2\pi)^3} \frac{1}{4M_B^2} p_{K^-} \tilde{p}_{D_s^+} |\tilde{t}_{D_s^+D_s^-}|^2 \\ \tilde{p}_{D_s^+} &= \frac{\lambda^{1/2} (M_{inv}^2(D_s^+D_s^-), m_{D_s^+}^2, m_{D_s^-}^2)}{2M_{inv}(D_s^+D_s^-)} \\ p_{K^-} &\Rightarrow \text{ the } K^- \text{ momentum in the } B^- \text{ rest frame} \\ \tilde{p}_{D^+}(\tilde{p}_{D_s^+}) &\Rightarrow \text{ the } D^+ \text{ or } D_s^+ \text{ momenta in the } D^+D^- (D_s^+D_s^-) \text{ rest frame}. \end{aligned}$$

・ロン・西方・ ・ ヨン・

5 DQC

Results: $d \Gamma/dM_{inv}(D^+D^-)$ and $d \Gamma/dM_{inv}(D_s^+D_s^-)$ of $B^- \to D^+D^-K^-$ and

The experimental points are taken from (C. Chen and E. S. Norella, ttps://indico.cern.ch/event/1176505/)

 \Rightarrow The second pole couples both to $D\bar{D}$ and $D_s^+ D_s^-$

 $B^-
ightarrow D_s^+ D_s^- K^-$ decays

 \Rightarrow produces the peak at 3930 MeV and an enhacement at the $D_s^+ D_s^-$ threshold compatible with the LHCb

 \Rightarrow THERE IS NO NEED TO INVOKE A NEW X₀(3960) STATE !!

Summary and Conclusion

- The D^+D^- and $D_s^+D_s^-$ mass distributions in the $B^- \to D^+D^-K^$ and $B^- \to D_s^+D_s^-K^-$ decays
- A $D_s^+ D_s^-$ bound state appears \Rightarrow can be associated to the $X_0(3930)$
 - \Rightarrow coupling strongly to $D_s \bar{D}_s$ and more weakly to $D\bar{D}$
 - \Rightarrow produces an enhancement in the $D_s^+ D_s^-$ mass distribution close to threshold with a shape in agreement with experiment
- There is no need to invoke a new $X_0(3960)$ state
- The experimental observation is due to the presence of the $X_0(3930)$.

THANK YOU FOR YOUR ATTENTION

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○