Molecular picture of Ω (2012)

Natsumi Ikeno (Tottori University)

Genaro Toledo, Wei-Hong Liang, Eulogio Oset

R. Pavao and E. Oset, Eur. Phys. J. C78, 857 (2018).
N. Ikeno, G. Toledo, and E. Oset, Phys. Rev. D 101, 094016 (2020).
N. Ikeno, W. H. Liang, G. Toledo, and E. Oset, Phys.Rev.D 106, 034022 (2022).

Discovery of $\Omega(2012)$: Strangeness $=-3$

In 2018, Belle reported a new state Ω (2012) state: [Phys. Rev. Lett. 121, 052003 (2018)]

$$
\begin{aligned}
& M_{\Omega(2012)}=2012.4 \pm 0.7 \pm 0.6 \mathrm{MeV} \\
& \Gamma_{\Omega(2012)}=6.4_{-2.0}^{+2.5} \pm 1.6 \mathrm{MeV}
\end{aligned}
$$

This prompted many theoretical studies on the issue

- Quark model pictures
\square Molecular pictures based on the meson-baryon interaction
- Only $\bar{K} \Xi^{*}(1530)$ state:
- Y. H. Lin and B. S. Zou, Phys. Rev. D 98, 056013 (2018).
- Coupled channels $\bar{K} \Xi^{*}(1530), \eta \Omega, \bar{K} \Xi$

FIG. 2. The (a) $\Xi^{0} K^{-}$and (b) $\Xi^{-} K_{S}^{0}$ invariant mass distributions in data taken at the $\Upsilon(1 S), \Upsilon(2 S)$, and $\Upsilon(3 S)$ resonance energies. - M. P. Valderrama, Phys. Rev. D 98, 054009 (2018).

- Y. Huang, M. Z. Liu, J. X. Lu, J. J. Xie, and L. S. Geng, Phys. Rev. D 98, 076012 (2018).
- R. Pavao and E. Oset, Eur. Phys. J. C 78, 857 (2018).
- M. V. Polyakov, H. D. Son, B. D. Sun, and A. Tandogan, Phys. Lett. B 792, 315 (2019).

Recent Belle data

- In 2019, Belle showed a result of the Ω (2012) decay: [Phys. Rev. D 100, 032006(2019)]
- Ratio R of the $\Xi \pi \mathrm{K}$ width to the $\Xi \mathrm{K}$ width is smaller than 11.9%.

$$
\mathcal{R}_{\Xi K}^{\Xi \pi K}=\frac{\mathcal{B}(\Omega(2012) \rightarrow \Xi(1530)(\rightarrow \Xi \pi) K)}{\mathcal{B}(\Omega(2012) \rightarrow \Xi K)}<11.9 \%
$$

\Rightarrow In 2022, a recent reanalysis of data (different cut): [arXiv:2207.03090 (2022)]

$$
\mathcal{R}_{\Xi \bar{K}}^{\Xi \pi \bar{K}}=0.97 \pm 0.24 \pm 0.07 \sim 97 \%
$$

- In 2021, $\Omega(2012)$ has been observed in the Ω_{c} decay [Phys. Rev. D 104, 052005(2021)]

$$
\frac{\mathcal{B}\left(\Omega_{c}^{0} \rightarrow \pi^{+} \Omega(2012)^{-}\right) \times \mathcal{B}\left(\Omega(2012)^{-} \rightarrow K^{-} \Xi^{0}\right)}{\mathcal{B}\left(\Omega_{c}^{0} \rightarrow \pi^{+} K^{-} \Xi^{0}\right)}=(9.6 \pm 3.2 \pm 1.8) \%
$$

We study the $\Omega(2012)$ state with the coupled channels approach: $\Omega(2012)$ is dynamically generated as a molecular state from the interaction of the $\bar{K} \Xi^{*}$ and $\eta \Omega$ coupled channels
=> We like to show the consistency of the molecular picture with Belle results

$$
\begin{cases}\mathcal{R}_{\Xi K}^{\Xi \pi K}=\frac{\mathcal{B}(\Omega(2012) \rightarrow \Xi(1530)(\rightarrow \Xi \pi) K)}{\mathcal{B}(\Omega(2012) \rightarrow \Xi K)}<11.9 \% & \text { (2019 ver.) } \\ \mathcal{R}_{\Xi \bar{K}}^{\Xi \pi \bar{K}}=0.97 \pm 0.24 \pm 0.07 & \text { (reanalysis: } 202 \\ \frac{\mathcal{B}\left(\Omega_{c}^{0} \rightarrow \pi^{+} \Omega(2012)^{-}\right) \times \mathcal{B}\left(\Omega(2012)^{-} \rightarrow K^{-} \Xi^{0}\right)}{\mathcal{B}\left(\Omega_{c}^{0} \rightarrow \pi^{+} K^{-} \Xi^{0}\right)}=(9.6 \pm 3.2 \pm 1.8) \%\end{cases}
$$

\checkmark We calculate the mass, width, and decay ratio R of $\Omega(2012)$
\checkmark We also study a mechanism for $\Omega_{\mathrm{c}} \rightarrow \pi^{+} \Omega(2012) \rightarrow \pi^{+}\left(\mathrm{K}^{-} \Xi^{0}\right)$ reaction

3 channels: $\bar{K} \Xi^{*}, \eta \Omega$ (s-wave), $\bar{K} \Xi$ (d-wave)

- Bethe-Salpeter equation:

$$
T=[1-V G]^{-1} V
$$

- Transition potential: $\Omega^{*} \mathrm{Jp}=3 / 2^{-}$

$$
V=\left(\begin{array}{ccc}
\bar{K} \Xi^{*} & \eta \Omega & \bar{K} \Xi \\
\left.\begin{array}{|ccc|}
\hline 0 & 3 F & \alpha q_{\mathrm{on}}^{2} \\
3 F & 0 & \beta q_{\mathrm{on}}^{2} \\
\alpha q_{\mathrm{on}}^{2} & \beta q_{\mathrm{on}}^{2} & 0
\end{array}\right) & \begin{array}{c}
\bar{K} \Xi^{*} \\
\eta \Omega \\
\bar{K} \Xi
\end{array}
\end{array}\right.
$$

$$
F=-\frac{1}{4 f^{2}}\left(k^{0}+k^{\prime 0}\right) \quad q_{\text {on }}=\frac{\lambda^{1 / 2}\left(s, m_{\bar{K}}^{2}, m_{\Xi}^{2}\right)}{2 \sqrt{s}}
$$

$k^{0}, k^{\prime 0}$ the energies of initial and final states
-the diagonal potential is null -the non-diagonal potential is nonzero.

- s-wave potentials between $\bar{K} \Xi^{*}$ and $\eta \Omega$: taken from chiral Lagrangian of

S. Sarkar, E. Oset, M.J. Vicente Vacas, NPA750(2005) 294
 E.E. Kolomeitsev, M.F.M. Lutz, PLB 585 (2004) 243-252

- d-wave potential between $\bar{K} \Xi$ and $\bar{K} \Xi *$ or $\eta \Omega$: described in terms of α, β : free parameters

A possible d-wave diagram for the $\bar{K} \Xi^{*->} \bar{K} \Xi$ transition

We do not make a model Estimates done by M. P. Valderrama, PRD98,054009 (2018).

$\mathrm{G}_{K^{-} \Xi *}$ function accounting for $\Xi^{*} \rightarrow \pi \Xi$ decay

- Meson-Baryon loop function G :

For s-wave channel

$$
G(\sqrt{s})=\left(\begin{array}{ccc}
G_{\bar{K} \Xi^{*}}(\sqrt{s}) & 0 & 0 \\
0 & G_{\eta \Omega}(\sqrt{s}) & 0 \\
0 & 0 & G_{\bar{K} \Xi}(\sqrt{s})
\end{array}\right)
$$

$$
G_{i}(\sqrt{s})=\int_{|\boldsymbol{q}|<q_{\text {max }}} \frac{d^{3} q}{(2 \pi)^{3}} \frac{1}{2 \omega_{i}(\boldsymbol{q})} \frac{M_{i}}{E_{i}(\boldsymbol{q})} \frac{1}{\sqrt{s}-\omega_{i}(\boldsymbol{q})-E_{i}(\boldsymbol{q})+i \epsilon}
$$

For d-wave channel

$$
\text { for } i=\bar{K} \Xi^{*}, \eta \Omega
$$

$$
G_{\bar{K} \Xi}(\sqrt{s})=\int_{|\boldsymbol{q}|<q_{\max }^{\prime}} \frac{d^{3} q}{(2 \pi)^{3}} \frac{\left(q / q_{\mathrm{on}}\right)^{4}}{2 \omega_{\bar{K}}(\boldsymbol{q})} \frac{M_{\Xi}}{E_{\Xi}(\boldsymbol{q})} \frac{1}{\sqrt{s}-\omega_{\bar{K}}(\boldsymbol{q})-E_{\Xi}(\boldsymbol{q})+i \epsilon}
$$

- We take into account the Ξ^{*} mass distribution due to its width for $\Xi^{*} \rightarrow \pi \Xi$ decay: $\mathrm{G}_{\mathrm{K}^{-} \Xi^{*}}$ is convolved with the Ξ^{*} mass distribution: $\Omega(2012) \rightarrow \pi \mathrm{K} \Xi$ decay $\tilde{G}_{\bar{K} \Xi^{*}}(\sqrt{s})=\frac{1}{N} \int_{M_{\Xi^{*}}-\Delta M_{\Xi^{*}}}^{M_{\Xi^{*}}+\Delta M_{\Xi^{*}}} d \tilde{M}\left(-\frac{1}{\pi}\right) \operatorname{Im}\left(\frac{1}{\tilde{M}-M_{\Xi^{*}}+i \frac{\Gamma_{\Xi^{*}}}{2}}\right) G_{\bar{K} \Xi^{*}}\left(\sqrt{s}, m_{\bar{K}}, \tilde{M}\right)$

$=>$ Comparison of the $\Omega(2012)$ with/without convolution gives us the estimate of $\Omega(2012)$ decay width into $\bar{K} \Xi$ and $\pi \bar{K} \Xi$ decay channels :

$$
\mathrm{R}=\frac{\Gamma_{\Omega^{*} \rightarrow \pi \bar{K} \Xi}}{\Gamma_{\Omega^{*} \rightarrow \bar{K} \Xi}}=\frac{\Gamma_{\Omega^{*}, \text { con }}-\Gamma_{\Omega^{*}, \text { non }}}{\Gamma_{\Omega^{*}, \text { non }}} \quad \begin{aligned}
& \Gamma_{\text {con }}: \mathrm{G}_{K^{-} \Xi^{*}} \text { with convolution (accounts for } \mathrm{K} \Xi \text { and } \pi \mathrm{K} \Xi \text { decays) } \\
& \Gamma_{\text {non }}: \mathrm{G}_{K^{-} \Xi *} \text { without convolution (only for } \mathrm{K} \Xi \text { decay) }
\end{aligned}
$$

Calculated $\Omega(2012)$ mass, width, and decay ratio

We make a fit to the experimental data by changing the $\alpha, \beta, q_{\text {max }}$ parameters.

$$
M_{\Omega(2012)}=2012.4 \pm 0.7 \pm 0.6 \mathrm{MeV} \quad \Gamma_{\Omega(2012)}=6.4_{-2.0}^{+2.5} \pm 1.6 \mathrm{MeV}
$$

- Result by R. Pavao and E. Oset, EPJC78(2018)

$\overline{\alpha\left(\mathrm{MeV}^{-3}\right)}$	$\beta\left(\mathrm{MeV}^{-3}\right)$
4.0×10^{-8}	$q_{\max }=q_{\max }^{\prime}(\mathrm{MeV})$
- Result with convolution	735
$m_{\Omega^{*}}=2012.37 \mathrm{MeV}$,	- Result without convolution
$\Gamma_{\Omega^{*}}=6.24 \mathrm{MeV}$.	$m_{\Omega^{*}}^{(\text {no conv. })}=2013.5 \mathrm{MeV}$,
$\mathrm{R}=\frac{\Gamma_{\Omega^{*} \rightarrow \pi \bar{K} \Xi}}{\Gamma_{\Omega^{*} \rightarrow \bar{K} \Xi}^{\text {(no conv. })}=3.2 \mathrm{MeV} .}$	
	$\Gamma_{\Omega^{*}, \text { con }}-\Gamma_{\Omega^{*}, \text { non }}$
$\Gamma_{\Omega^{*}, \text { non }}$	$=0.95$

$=>$ Good agreement with the latest Belle result $\mathcal{R}_{\bar{E} K}^{\mathbb{E n}_{K}^{K}}=0.97 \pm 0.24 \pm 0.07$

Limitation of calculated ratio R

We also find an acceptable solution in terms of natural values for the $q_{\text {max }}, \alpha, \beta$ parameters which reproduce fairly well the experimental data in 2019

$$
\mathrm{R}=\frac{\Gamma_{\Omega}(\pi \bar{K} \Xi)}{\Gamma_{\Omega, \bar{K} \Xi}}<11.9 \%
$$

- Results by N. Ikeno, G. Toledo, and E. Oset, PRD101, 094016 (2020)

	Set 1	Set 2	Set 3
$q_{\max }\left(\bar{K} \Xi^{*}\right)[\mathrm{MeV}]$	735	775	735
$q_{\max }(\eta \Omega)[\mathrm{MeV}]$	735	710	750
$\alpha\left[10^{-8} \mathrm{MeV}^{-3}\right]$	-8.7	-8.7	-11.0
$\beta\left[10^{-8} \mathrm{MeV}^{-3}\right]$	18.3	18.3	20.0
R	10.9%	10.4%	10.9%

Similar results in J. Lu, C. Zeng, E. Wang, J. Xie, and L. Geng, Eur. Phys. J. C, 361 (2020)
$=>$ The molecular picture was pushed to the limit and showed that the ratio R could be made as small as 10%, but not smaller than 10%

Couplings g_{i} of different channels

- The couplings g_{i} of the $\Omega(2012)$ to the different channels are obtained from the residue of the T-matrix of the pole in the second Riemann sheet. Close to the pole

$$
\begin{aligned}
T_{i j} & =\frac{g_{i} g_{j}}{z-z_{R}}\left(z, \text { complex energy } ; z_{R}, \text { complex pole position }\right) \\
g_{i}^{2} & =\lim _{z \rightarrow z_{R}}\left(z-z_{R}\right) T_{i i} ; g_{j}=\left.g_{i} \frac{T_{i j}}{T_{i i}}\right|_{z=z_{R}} .
\end{aligned}
$$

- We also show the wave function at the origin for the s-wave states, $\mathrm{wf}\left(g_{i} G_{i}\right)$, and
the probability of each channel $-g_{i}^{2} \frac{\partial G_{i}}{\partial \sqrt{s}}$

	$\bar{K} \Xi^{*}(2027)$	$\eta \Omega(2220)$	$\bar{K} \Xi(1812)$
g_{i}	$1.86-i 0.02$	$3.52-i 0.46$	$-0.42+i 0.12$
g_{i} (Pavao, Oset)	$2.01+i 0.02$	$2.84-i 0.01$	$-0.29+i 0.04$
$\operatorname{wf}_{i}\left(g_{i} G_{i}\right)$	$-34.05-i 1.10$	$-30.66+i 3.67$	\ldots
$-g_{i}^{2} \frac{\partial G_{i}}{\partial \sqrt{s}}$	$0.57+i 0.10$	$0.25-i 0.06$	\cdots

$$
\sum_{i}(-) g_{i}^{2} \frac{\partial G}{\partial \sqrt{s}}=1,
$$

- D. Gamermann, J. Nieves, E. Oset, and E. R. Arriola, PRD 81, 014029 (2010)- S. Weinberg, Phys. Rev. 130, 776 (1963)
- T. Hyodo, D. Jido and A. Hosaka, PRC85,015201 (2012)
- T. Hyodo, Int. J. Mod. Phys. A28, 1330045 (2013).
- T. Sekihara, PRC104, 035202 (2021), etc.
=> The strength of the $w f$ and the probability dominates for the $\bar{K} \Xi^{*}$ state.
Note, however, that the $\eta \Omega$ channel is required to bind Ω^{*} state since the diagonal potential of the $\bar{K} \Xi^{*}$ channel is zero and hence cannot produce any bound state by itself.

The $\Omega_{c} \rightarrow \pi^{+} \Omega(2012) \rightarrow \pi^{+}\left(\mathrm{K}^{-} \Xi^{0}\right)$ reaction

- Belle data in 2021 [PRD104, 052005(2021)]: $\frac{\mathcal{B}\left(\Omega_{c}^{0} \rightarrow \pi^{+} \Omega(2012)^{-}\right) \times \mathcal{B}\left(\Omega(2012)^{-} \rightarrow K^{-} \Xi^{0}\right)}{\mathcal{B}\left(\Omega_{c}^{0} \rightarrow \pi^{+} K^{-} \Xi^{0}\right)}=(9.6 \pm 3.2 \pm 1.8) \%$
- We study a mechanism for $\Omega_{c} \rightarrow \pi^{+} \Omega(2012)$ production through an external emission Cabibbo favored weak decay mode, where the $\Omega(2012)$ is dynamically generated from the interaction of $\bar{K} \Xi^{*}$ and $\eta \Omega$, with $\bar{K} \Xi$ as the main decay channel. N. Ikeno, W. H. Liang, G. Toledo, and E. Oset, PRD 106, 034022 (2022).

Microscopic picture for the weak decay $\Omega_{c} \rightarrow \pi^{+}$sss through external emission mechanism

\Rightarrow Our decay channels require three particles in the final state
\Rightarrow Hadronization must occur to produce the extra particle.

Hadronization of an ss pair

- Weak interaction vertices:

$$
\begin{gathered}
\mathcal{L}_{W, \pi} \sim W^{\mu} \partial_{\mu} \phi . \quad \mathcal{L}_{\bar{q} W_{q}} \sim \bar{q}_{\mathrm{fin}} W_{\mu} \gamma^{\mu}\left(1-\gamma_{5}\right) q_{\mathrm{in}} \\
V_{P}=C\left(q^{0}+\vec{\sigma} \cdot \vec{q}\right) . \quad \mathrm{C}: \text { unknown constant }
\end{gathered}
$$

$$
s s s \rightarrow \sum_{i} s \bar{q}_{i} q_{i} s s=\sum_{i} P_{3 i} q_{i} s s
$$

$$
\text { where } \quad P \equiv\left(\begin{array}{ccc}
\frac{\pi^{0}}{\sqrt{2}}+\frac{\eta}{\sqrt{3}}+\frac{\eta^{\prime}}{\sqrt{6}} & \pi^{+} & K^{+} \\
\pi^{-} & -\frac{\pi^{0}}{\sqrt{2}}+\frac{\eta}{\sqrt{3}}+\frac{\eta}{\sqrt{6}} & K^{0} \\
K^{-} & \bar{K}^{0} & -\frac{\eta}{\sqrt{3}}+\sqrt{\frac{\sqrt{3}}{3} \eta^{\prime}}
\end{array}\right)
$$

$$
s s s \rightarrow K^{-} \underline{\underline{u s s}}+\bar{K}^{0} \underline{d s s}-\frac{\eta}{\sqrt{3}} s s s
$$

$$
=>\text { We obtain } \bar{K} \Xi^{*} \bar{K} \Xi, \eta \Omega
$$

K. Miyahara, et al., PRC95, 035212 (2017) :
V. R. Debastiani, et al., PRD97, 094035 (2018)

The $\Omega_{c} \rightarrow \pi^{+} \Omega(2012) \rightarrow \pi^{+}\left(\mathrm{K}^{-} \Xi^{0}\right)$ reaction

$\pi^{+} \mathrm{K} \Xi^{*}$ and $\pi^{+} \eta \Omega$ are produced
$=>\mathrm{K} \Xi^{*}$ and $\eta \Omega$ interact and produce $\Omega(2012)$
$=>$ Later $\Omega(2012)$ decays into $K \Xi$

The $\bar{K} \Xi$ mass distribution for Ω_{c} decay:

$$
\frac{d \Gamma_{\text {signal }}}{d M_{\text {inv }}\left(K^{-} \Xi^{0}\right)}=\frac{1}{(2 \pi)^{3}} \frac{M_{\Xi}}{M_{\Omega_{c}}} p_{\pi} \tilde{p}_{K^{-}} \sum|\bar{t}|^{2},
$$

Amplitude t:

$$
\begin{aligned}
t= & W\left(K^{-} \Xi^{* 0}\right) G_{\bar{K} \Xi^{*}}\left(M_{\mathrm{inv}}\right)\left(-\frac{1}{\sqrt{2}}\right) g_{R, \bar{K} \Xi^{*}} \frac{1}{M_{\mathrm{inv}}-M_{R}+i \frac{\Gamma_{R}}{2}}\left(-\frac{1}{\sqrt{2}} g_{R, \bar{K} \Xi}\right) \\
& +W\left(\bar{K}^{0} \Xi^{*-}\right) G_{\bar{K} \Xi^{*}}\left(M_{\mathrm{inv}}\right)\left(-\frac{1}{\sqrt{2}}\right) \underline{g_{R, \bar{K} \Xi^{*}}} \frac{1}{M_{\mathrm{inv}}-M_{R}+i \frac{\Gamma_{R}}{2}}\left(-\frac{1}{\sqrt{2}} \underline{g_{R, \bar{K} \Xi}}\right)
\end{aligned}
$$

$$
+W(\eta \Omega) G_{\eta \Omega}\left(M_{\mathrm{inv}}\right) \underline{g_{R, \eta \Omega}} \frac{1}{M_{\mathrm{inv}}-M_{R}+i \frac{\Gamma_{R}}{2}}\left(-\frac{1}{\sqrt{2}} \underline{g_{R, \bar{K} \Xi}}\right)
$$

$$
R \text { stands for } \Omega(2012) \text { resonance }
$$

$$
g_{R, \bar{K} \Xi^{*}}, g_{R, \eta \Omega}, g_{R, \bar{K} \Xi}: \text { Couplings to } \Omega(2012)
$$

W: Weight for the matrix elements of $\Omega_{c} \uparrow \uparrow \uparrow$ going to π^{+}and the different final states

Background for $\Omega_{c} \rightarrow \pi^{+} \mathrm{K}^{-} \Xi^{0}$ without going through the $\Omega(2012)$
(1) Direct reaction:

$$
\begin{aligned}
\frac{\mathrm{d} \Gamma_{\mathrm{bac}}^{(1)}}{\mathrm{d} M_{\mathrm{inv}}\left(K^{-} \Xi^{0}\right)} & =\frac{1}{(2 \pi)^{3}} \frac{M_{\Xi}}{M_{\Omega_{c}}} p_{\pi} \tilde{p}_{K^{-}} \sum\left|\bar{t}_{\mathrm{bac}}^{(1)}\right|^{2} \\
& \sum\left|\bar{t}_{\mathrm{bac}}^{(1)}\right|^{2}=C^{2} \frac{4}{27} \vec{q}^{2} . \quad q=p_{\pi^{+}}=\frac{\lambda^{1 / 2}\left(M_{\Omega_{c}}^{2}, m_{\pi}^{2}, M_{\mathrm{inv}}^{2}\left(K^{-} \Xi^{0}\right)\right)}{2 M_{\Omega_{c}}}
\end{aligned}
$$

(2) Reaction through intermediate states:

$$
\frac{\mathrm{d} \Gamma_{\mathrm{bac}}^{(2)}}{\mathrm{d} M_{\mathrm{inv}}\left(K^{-} \Xi^{0}\right)}=\frac{1}{(2 \pi)^{3}} \frac{M_{\Xi}}{M_{\Omega_{c}}} p_{\pi^{+}} \tilde{p}_{K^{-}} \sum\left|\bar{t}_{\mathrm{bac}}^{(2)}\right|^{2}
$$

$$
\begin{aligned}
t_{\text {bac }}^{(2)}= & W\left(K^{-} \Xi^{* 0}\right) \cdot G_{\bar{K} \Xi^{*}}\left(M_{\mathrm{inv}}\right) \cdot\left(-\frac{1}{\sqrt{2}}\right) \frac{\alpha \vec{p}_{K}^{2}}{}\left(-\frac{1}{\sqrt{2}}\right) \\
& +W\left(\bar{K}^{0} \Xi^{*-}\right) \cdot G_{\bar{K} \Xi^{*}}\left(M_{\mathrm{inv}}\right) \cdot\left(-\frac{1}{\sqrt{2}}\right) \underline{\alpha \vec{p}_{K}^{2}}\left(-\frac{1}{\sqrt{2}}\right) \\
& +W(\eta \Omega) \cdot G_{\eta \Omega}\left(M_{\mathrm{inv}}\right) \cdot \beta \vec{p}_{\bar{K}}^{2}\left(-\frac{1}{\sqrt{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& V_{\bar{K} \Xi^{*} \rightarrow \bar{K} \Xi}=\alpha \vec{q}_{\bar{K}}^{2}, \\
& V_{\eta \Omega \rightarrow \bar{K} \Xi}=\beta \vec{q}_{\bar{K}}^{2}
\end{aligned}
$$

$$
\alpha, \beta: \text { Potential parameters }
$$

Calculated total $\pi^{+} \mathrm{K}^{-}-\Xi^{0}$ production

- We define ratios:

$$
\begin{array}{ll}
R_{1} \equiv \frac{\Gamma_{\text {bac }}^{(1)}}{\Gamma_{\text {signal }}}=\frac{\Gamma_{\text {bac }}^{(1)} / \Gamma_{\Omega_{c}}}{\Gamma_{\text {signal }} / \Gamma_{\Omega_{c}}}=\frac{\mathcal{B}_{\text {bac }}^{(1)}}{\mathcal{B}_{\text {signal }}} & R_{2} \equiv \frac{\Gamma_{\text {bac }}^{(2)}}{\Gamma_{\text {signal }}}=\frac{\Gamma_{\text {bac }}^{(2)} / \Gamma_{\Omega_{c}}}{\Gamma_{\text {signal }} / \Gamma_{\Omega_{c}}}=\frac{\mathcal{B}_{\text {bac }}^{(2)}}{\mathcal{B}_{\text {signal }}} \\
=>\mathcal{B}_{\text {bac }}^{(1)}=R_{1} \mathcal{B}_{\text {signal }} & =>\mathcal{B}_{\text {bac }}^{(2)}=R_{2} \mathcal{B}_{\text {signal }}
\end{array}
$$

	R_{1}	R_{2}	$R_{1}+R_{2}$
Set 1	0.23	0.16	0.39
Set 2	0.21	0.12	0.33
Set 3	0.21	0.20	0.41
Set 4	0.45	0.17	0.62

Calculated ratios with the parameter sets of $\mathrm{g}, \mathrm{q}_{\text {max }} \alpha$, and β, obtained before
N. Ikeno, G. Toledo, E. Oset, PRD(2020)
R. Pavao and E. Oset, EPJC78(2018)

- Total $\pi^{+} \mathrm{K}^{-} \Xi^{0}$ production stemming from the molecular picture

$$
\begin{aligned}
& \mathcal{B}\left[\Omega_{c} \rightarrow \pi^{+} K^{-} \Xi^{0}\right]_{\text {th }}=\mathcal{B}_{\text {signal }}+\mathcal{B}_{\text {bac }}^{(1)}+\mathcal{B}_{\text {bac }}^{(2)}=\mathcal{B}_{\text {signal }}\left(1+R_{1}+R_{2}\right) \quad \text { <- Unknown constant } \mathrm{C} \text { is implicitly }
\end{aligned}
$$

$=>$ Based on the molecular picture, we obtain only about $12-20 \%$ of the total production with the three modes evaluated to produce $\pi^{+} K^{-} \Xi^{0}$, one resonant and two nonresonant

- There are two other sources we did not consider: $\Omega_{c} \rightarrow \Xi^{0} \bar{K}^{* 0} \rightarrow \Xi^{0} K^{-} \pi^{+}$(PDG data) $\sim 85 \%$ of the total production $\quad \Omega_{c} \rightarrow \pi^{+} \Omega^{*} \rightarrow \pi^{+} K^{-} \Xi^{0}$ (Quark model)

Summary

- We have studied the molecular picture for the $\Omega(2012)$ state with the coupled channels $\bar{K} \Xi^{*}, \eta \Omega, \bar{K} \Xi$
- We also have studied the $\Omega_{\mathrm{c}} \rightarrow \pi^{+} \Omega(2012) \rightarrow \pi^{+} \mathrm{K}^{-} \Xi^{0}$ reaction
- We found that the obtained results are consistent with all Belle results
- Ω (2012) mass, width, and the ratio R of the $\Xi \pi \mathrm{K}$ width to the $\Xi \mathrm{K}$ width
- All three channels account for about (12-20)\% of the total $\Omega_{c} \rightarrow \pi^{+} K^{-} \Xi^{0}$ decay rate
- We should note that the molecular structure of $\Omega(2012)$ is mostly a $\bar{K} \Xi^{*}$ bound state. However, it requires the interaction with the $\eta \Omega$ channel to bind, while neither the $\bar{K} \Xi^{*}$ nor the $\eta \Omega$ states would be bound by themselves.
- New information on experimental data is most welcome.

Two other sources we did not consider

$\Omega_{c} \rightarrow \Xi^{0} \bar{K}^{* 0} \rightarrow \Xi^{0} K^{-} \pi^{+}$
(Γ_{7}, Γ_{8} of PDG data)
$\frac{\Gamma_{8}}{\Gamma_{7}}=\frac{\mathcal{B}\left[\Xi^{0} \bar{K}^{* 0} \rightarrow \Xi^{0} K^{-} \pi^{+}\right]}{\mathcal{B}\left[\Xi^{0} K^{-} \pi^{+}\right]}=\frac{0.68 \pm 0.16}{1.20 \pm 0.18}=\underline{0.57 \pm 0.16}$,
$=>$ This means that about 60% of the $\Omega_{c} \rightarrow \pi^{+} K^{-} \Xi^{0}$ decay comes from the $\Xi^{0} \mathrm{~K}^{*-} \rightarrow \pi^{+} \mathrm{K}^{-} \Xi^{0}$ decay, which is not a part of our calculation
$\Omega_{c} \rightarrow \pi^{+} \Omega^{*} \rightarrow \pi^{+} K^{-} \Xi^{0}$
Ω^{*} are any kind of excited Ω (sss) states
We can rely upon a theoretical Quark model calculation
K. L. Wang, Q. F. Lü, J. J. Xie, and X. H. Zhong, arXiv: 2203.04458

$$
\begin{aligned}
& \frac{\mathcal{B}\left[\Omega_{c} \rightarrow \pi^{+} \Omega\left(1^{2} P_{3 / 2^{-}}\right) \rightarrow \pi^{+} K^{-} \Xi^{0}\right]}{\mathcal{B}\left[\Omega_{c} \rightarrow \pi^{+} K^{-} \Xi^{0}\right]} \simeq 0.08, \\
& \frac{\mathcal{B}\left[\Omega_{c} \rightarrow \pi^{+} \Omega\left(1^{2} P_{1 / 2^{-}}\right) \rightarrow \pi^{+} K^{-} \Xi^{0}\right]}{\mathcal{B}\left[\Omega_{c} \rightarrow \pi^{+} K^{-} \Xi^{0}\right]} \simeq 0.11, \\
& \frac{\mathcal{B}\left[\Omega_{c} \rightarrow \pi^{+} \Omega\left(1^{4} D_{1 / 2^{+}}\right) \rightarrow \pi^{+} K^{-} \Xi^{0}\right]}{\mathcal{B}\left[\Omega_{c} \rightarrow \pi^{+} K^{-} \Xi^{0}\right]} \simeq 0.04 \\
& \frac{\mathcal{B}\left[\Omega_{c} \rightarrow \pi^{+} \Omega\left(1^{4} D_{3 / 2^{+}}\right) \rightarrow \pi^{+} K^{-} \Xi^{0}\right]}{\mathcal{B}\left[\Omega_{c} \rightarrow \pi^{+} K^{-} \Xi^{0}\right]} \simeq 0.02
\end{aligned}
$$

Summing all these contributions, we find a fraction of

$$
\frac{\mathcal{B}\left[\Omega_{c} \rightarrow \pi^{+} \Omega^{*} \rightarrow \pi^{+} K^{-} \Xi^{0}\right]}{\mathcal{B}\left[\Omega_{c} \rightarrow \pi^{+} K^{-} \Xi^{0}\right]} \simeq \underline{0.25}
$$

W: Weight for the matrix elements of $\Omega_{c} \uparrow \uparrow \uparrow$ going to π^{+}and the different final states

$$
\begin{aligned}
& K^{-} \Xi^{* 0}\left(S_{z}=3 / 2\right): W=\frac{1}{\sqrt{3}} C\left(q^{0}+q_{z}\right), \\
& \bar{K}^{0} \Xi^{*-}\left(S_{z}=3 / 2\right): W=\frac{1}{\sqrt{3}} C\left(q^{0}+q_{z}\right), \\
& \eta \Omega\left(S_{z}=3 / 2\right): W=-\frac{1}{\sqrt{3}} C\left(q^{0}+q_{z}\right), \\
& K^{-} \Xi^{* 0}\left(S_{z}=1 / 2\right): W=\frac{1}{3} C q_{+} \\
& \bar{K}^{0} \Xi^{*-}\left(S_{z}=1 / 2\right): W=\frac{1}{3} C q_{+}, \\
& \eta \Omega\left(S_{z}=1 / 2\right): W=-\frac{1}{3} C q_{+} \\
& K^{-} \Xi^{0}\left(S_{z}=1 / 2\right): W=\frac{\sqrt{2}}{3} C q_{+} \\
& \bar{K}^{0} \Xi^{-}\left(S_{z}=1 / 2\right): W=-\frac{\sqrt{2}}{3} C q_{+},
\end{aligned}
$$

$$
V_{P}=C\left(q^{0}+\vec{\sigma} \cdot \vec{q}\right)
$$

the matrix element of

$$
\begin{gathered}
\vec{\sigma} \cdot \vec{q}=\sigma_{+} q_{-}+\sigma_{-} q_{+}+\sigma_{z} q_{z}, \\
\sigma_{+}=\frac{1}{2}\left(\sigma_{x}+i \sigma_{y}\right), \quad \sigma_{-}=\frac{1}{2}\left(\sigma_{x}-i \sigma_{y}\right), \\
q_{+}=q_{x}+i q_{y}, \quad q_{-}=q_{x}-i q_{y},
\end{gathered}
$$

q^{0} is the energy of the π^{+}and q its three-momentum

We can take the z direction in the π^{+}direction, and when integrating over the π^{+}angles, we get the angle averaged values of $q_{z}^{2}, q^{0} q_{z}$, and $\left|q_{+}\right|^{2}$,

$$
q_{z}^{2} \rightarrow \frac{1}{3} \vec{q}^{2}, \quad q^{0} q_{z} \rightarrow 0, \quad\left|q_{+}\right|^{2}=q_{x}^{2}+q_{y}^{2} \rightarrow \frac{2}{3} \vec{q}^{2}
$$

