Molecular picture of $\Omega(2012)$

Natsumi Ikeno (Tottori University)

Genaro Toledo, Wei-Hong Liang, Eulogio Oset

R. Pavao and E. Oset, Eur. Phys. J. C78, 857 (2018).
N. Ikeno, G. Toledo, and E. Oset, Phys. Rev. D 101, 094016 (2020).
N. Ikeno, W. H. Liang, G. Toledo, and E. Oset, Phys.Rev.D 106, 034022 (2022).

QNP2022 - The 9th International Conference on Quarks and Nuclear Physics September 5-9, 2022

Tottori

Discovery of $\Omega(2012)$: Strangeness = -3

In 2018, Belle reported a new state $\Omega(2012)$ state: [Phys. Rev. Lett. 121, 052003 (2018)]

 $M_{\Omega(2012)} = 2012.4 \pm 0.7 \pm 0.6 \text{ MeV}$ $\Gamma_{\Omega(2012)} = 6.4^{+2.5}_{-2.0} \pm 1.6 \text{ MeV}$

This prompted many theoretical studies on the issue

Quark model pictures

Molecular pictures based on the meson-baryon interaction

• Only $\overline{K}\Xi^*(1530)$ state:

- Y. H. Lin and B. S. Zou, Phys. Rev. D 98, 056013 (2018).

- Coupled channels $\bar{K}\Xi^*(1530), \eta\Omega, \bar{K}\Xi$
 - M. P. Valderrama, Phys. Rev. D 98, 054009 (2018).
 - Y. Huang, M. Z. Liu, J. X. Lu, J. J. Xie, and L. S. Geng, Phys. Rev. D 98, 076012 (2018).
 - R. Pavao and E. Oset, Eur. Phys. J. C 78, 857 (2018).
 - M. V. Polyakov, H. D. Son, B. D. Sun, and A. Tandogan, Phys. Lett. B 792, 315 (2019).

FIG. 2. The (a) $\Xi^0 K^-$ and (b) $\Xi^- K_S^0$ invariant mass distributions in data taken at the $\Upsilon(1S)$, $\Upsilon(2S)$, and $\Upsilon(3S)$ resonance energies.

Recent Belle data

- In **2019**, Belle showed a result of the $\Omega(2012)$ decay: [Phys. Rev. D 100, 032006(2019)]
 - Ratio R of the $\Xi \pi K$ width to the ΞK width is smaller than 11.9%.

$$\mathcal{R}_{\Xi K}^{\Xi \pi K} = \frac{\mathcal{B}(\Omega(2012) \to \Xi(1530)(\to \Xi \pi)K)}{\mathcal{B}(\Omega(2012) \to \Xi K)} < 11.9\%$$

$$\Rightarrow \text{ In } \mathbf{2022}, \text{ a recent reanalysis of data (different cut):}$$

$$[arXiv:2207.03090 (2022)]$$

$$\Omega(2012) \to \pi K\Xi$$

$$\mathcal{R}_{\Xi\bar{K}}^{\Xi\pi\bar{K}} = 0.97 \pm 0.24 \pm 0.07$$
 ~ 97%

• In **2021**, $\Omega(2012)$ has been observed in the Ω_c decay [Phys. Rev. D 104, 052005(2021)] $\frac{\mathcal{B}(\Omega_c^0 \to \pi^+ \Omega(2012)^-) \times \mathcal{B}(\Omega(2012)^- \to K^- \Xi^0)}{\mathcal{B}(\Omega_c^0 \to \pi^+ K^- \Xi^0)} = (9.6 \pm 3.2 \pm 1.8)\%$

Ξ

We study the $\Omega(2012)$ state with the coupled channels approach: $\Omega(2012)$ is dynamically generated as a molecular state from the interaction of the $\overline{K}\Xi^*$ and $\eta\Omega$ coupled channels

=> We like to show the consistency of the molecular picture

with Belle results

$$\begin{pmatrix}
 \mathcal{R}_{\Xi K}^{\Xi \pi K} = \frac{\mathcal{B}(\Omega(2012) \to \Xi(1530)(\to \Xi \pi)K)}{\mathcal{B}(\Omega(2012) \to \Xi K)} < 11.9\% \quad (2019 \text{ ver.}) \\
 \mathcal{R}_{\Xi \bar{K}}^{\Xi \pi \bar{K}} = 0.97 \pm 0.24 \pm 0.07 \quad (reanalysis: 2022 \text{ ver.}) \\
 \frac{\mathcal{B}(\Omega_c^0 \to \pi^+ \Omega(2012)^-) \times \mathcal{B}(\Omega(2012)^- \to K^- \Xi^0)}{\mathcal{B}(\Omega_c^0 \to \pi^+ K^- \Xi^0)} = (9.6 \pm 3.2 \pm 1.8)\%$$

✓ We calculate the mass, width, and decay ratio R of $\Omega(2012)$

✓ We also study a mechanism for $\Omega_c \rightarrow \pi^+\Omega(2012) \rightarrow \pi^+(K^-\Xi^0)$ reaction

Formalism: Coupled channels approach

- 3 channels: $\bar{K}\Xi^*, \eta\Omega$ (s-wave), $\bar{K}\Xi$ (d-wave)
- Bethe-Salpeter equation: $T = [1 - VG]^{-1} V$

• Transition potential: $\Omega^* J^p = 3/2^-$

$$V = \begin{pmatrix} \bar{K}\Xi^* & \eta\Omega & \bar{K}\Xi \\ 0 & 3F & \alpha q_{\rm on}^2 \\ 3F & 0 & \beta q_{\rm on}^2 \\ \alpha q_{\rm on}^2 & \beta q_{\rm on}^2 & 0 \end{pmatrix} \quad \bar{K}\Xi^*$$

$$F = -\frac{1}{4f^2}(k^0 + k'^0) \qquad q_{\rm on} = \frac{\lambda^{1/2} \left(s, m_{\bar{K}}^2, m_{\Xi}^2\right)}{2\sqrt{s}}$$

 $k^{0}\!,\,k'^{0}\!$ the energies of initial and final states

-the diagonal potential is null -the non-diagonal potential is nonzero. - s-wave potentials between $\bar{K}\Xi^*$ and $\eta\Omega$: taken from chiral Lagrangian of

S. Sarkar, E. Oset, M.J. Vicente Vacas, NPA750(2005) 294 E.E. Kolomeitsev, M.F.M. Lutz, PLB 585 (2004) 243–252

- d-wave potential between $\overline{K}\Xi$ and $\overline{K}\Xi^*$ or $\eta\Omega$: described in terms of α , β : free parameters

A possible d-wave diagram for the $\bar{K}\Xi^* \rightarrow \bar{K}\Xi$ transition

We do not make a model Estimates done by M. P. Valderrama, PRD98,054009 (2018).

$G_{K^{-}\Xi^{*}}$ function accounting for $\Xi^{*} \rightarrow \pi \Xi$ decay

q_{max}: cut off parameter For s-wave channel Meson-Baryon loop function G: $G(\sqrt{s}) = \begin{pmatrix} G_{\bar{K}\Xi^*}(\sqrt{s}) & 0 & 0\\ 0 & G_{\eta\Omega}(\sqrt{s}) & 0\\ 0 & 0 & G_{\bar{K}\Xi}(\sqrt{s}) \end{pmatrix} \qquad \text{For d-wave channel} \qquad \text{for } i = \bar{K}\Xi^*, \eta \in \mathbb{C}$ for $i = \bar{K} \Xi^*, \eta \Omega$ $G_{\bar{K}\Xi}(\sqrt{s}) = \int_{|\boldsymbol{a}| < a'} \frac{d^3 q}{(2\pi)^3} \frac{(q/q_{\rm on})^4}{2\omega_{\bar{K}}(\boldsymbol{q})} \frac{M_{\Xi}}{E_{\Xi}(\boldsymbol{q})} \frac{1}{\sqrt{s} - \omega_{\bar{K}}(\boldsymbol{a}) - E_{\Xi}(\boldsymbol{a}) + i\epsilon}$ We take into account the Ξ^* mass distribution due to its width for $\Xi^* \rightarrow \pi \Xi$ decay: $G_{K-\Xi*}$ is convolved with the Ξ^* mass distribution: $\Omega(2012) \rightarrow \pi K\Xi$ decay $\tilde{G}_{\bar{K}\Xi^{*}}(\sqrt{s}) = \frac{1}{N} \int_{M_{\pi^{*}} - \Delta M_{\pi^{*}}}^{M_{\Xi^{*}} + \Delta M_{\Xi^{*}}} d\tilde{M} \left(-\frac{1}{\pi}\right) \operatorname{Im}\left(\frac{1}{\tilde{M} - M_{\Xi^{*}} + i\frac{\Gamma_{\Xi^{*}}}{\pi}}\right) G_{\bar{K}\Xi^{*}}(\sqrt{s}, m_{\bar{K}}, \tilde{M})$ [I] * Ξ^*

=> Comparison of the $\Omega(2012)$ with/without convolution gives us the estimate of $\Omega(2012)$ decay width into $\overline{K}\Xi$ and $\pi\overline{K}\Xi$ decay channels :

Calculated $\Omega(2012)$ mass, width, and decay ratio

We make a fit to the experimental data by changing the α , β , q_{max} parameters. $M_{\Omega(2012)} = 2012.4 \pm 0.7 \pm 0.6 \text{ MeV}$ $\Gamma_{\Omega(2012)} = 6.4^{+2.5}_{-2.0} \pm 1.6 \text{ MeV}$

• Result by R. Pavao and E. Oset, EPJC78(2018)

=> Good agreement with the latest Belle result $\mathcal{R}_{\Xi\bar{K}}^{\Xi\pi\bar{K}} = 0.97 \pm 0.24 \pm 0.07$

Limitation of calculated ratio R

We also find an acceptable solution in terms of natural values for the q_{max} , α , β parameters which reproduce fairly well the experimental data in 2019

$$\mathsf{R} = \frac{\Gamma_{\Omega}(\pi K \Xi)}{\Gamma_{\Omega, \bar{K} \Xi}} < 11.9 \%$$

• Results by N. Ikeno, G. Toledo, and E. Oset, PRD101, 094016 (2020)

	Set 1	Set 2	Set 3
$q_{\max}(\bar{K}\Xi^*)$ [MeV]	735	775	735
$q_{\rm max}(\eta\Omega)$ [MeV]	735	710	750
$\alpha \ [10^{-8} \text{ MeV}^{-3}]$	-8.7	-8.7	-11.0
$\beta \ [10^{-8} \text{ MeV}^{-3}]$	18.3	18.3	20.0
R	10.9 %	10.4 %	10.9 %

Similar results in J. Lu, C. Zeng, E. Wang, J. Xie, and L. Geng, Eur. Phys. J. C, 361 (2020)

=> The molecular picture was pushed to the limit and showed that the ratio R could be made as small as 10%, but not smaller than 10%

Couplings g_i of different channels

The couplings g_i of the $\Omega(2012)$ to the different channels are obtained from the residue of the T-matrix of the pole in the second Riemann sheet. Close to the pole

$$T_{ij} = \frac{g_i g_j}{z - z_R} (z, \text{complex energy}; z_R, \text{complex pole position})$$
$$g_i^2 = \lim_{z \to z_R} (z - z_R) T_{ii}; \ g_j = g_i \frac{T_{ij}}{T_{ii}} |_{z = z_R}.$$

We also show the wave function at the origin for the s-wave states, wf($g_i G_i$), and the probability of each channel $-g_i^2 \frac{\partial G_i}{\partial \sqrt{z}}$

	$\bar{K}\Xi^{*}$ (2027)	$\eta\Omega$ (2220)	<i>Ē</i> Ξ (1812)
g_i	1.86 - i0.02	3.52 - i0.46	-0.42 + i0.12
g_i (Pavao, Oset)	2.01 + <i>i</i> 0.02	2.84 - <i>i</i> 0.01	-0.29 + <i>i</i> 0.04
$\mathrm{wf}_i(g_iG_i)$	-34.05 - i1.10	-30.66 + i3.67	
$-g_i^2 \frac{\partial G_i}{\partial \sqrt{s}}$	0.57 + i0.10	0.25 - i0.06	

 $\sum_{i} (-) g_i^2 \frac{\partial G}{\partial \sqrt{s}} = 1,$

- D. Gamermann, J. Nieves, E. Oset, and E. R. Arriola, PRD 81, 014029 (2010).
- F. Aceti, L.R. Dai, L.S. Geng, E. Oset and Y. Zhang, EPJA50, 57 (2014)
- S. Weinberg, Phys. Rev. 130, 776 (1963).
- T. Hyodo, D. Jido and A. Hosaka, PRC85,015201 (2012).
- T. Hyodo, Int. J. Mod. Phys. A28, 1330045 (2013).
- T. Sekihara, PRC104, 035202 (2021),

etc.

=> The strength of the *wf* and the probability dominates for the $\overline{K}\Xi^*$ state.

Note, however, that the $\eta\Omega$ channel is required to bind Ω^* state since the diagonal potential of the $\overline{K}\Xi^*$ channel is zero and hence cannot produce any bound state by itself.

The $\Omega_{c} \rightarrow \pi^{+}\Omega(2012) \rightarrow \pi^{+}(K^{-}\Xi^{0})$ reaction

- Belle data in 2021 [PRD104, 052005(2021)]: $\frac{\mathcal{B}(\Omega_c^0 \to \pi^+ \Omega(2012)^-) \times \mathcal{B}(\Omega(2012)^- \to K^- \Xi^0)}{\mathcal{B}(\Omega_c^0 \to \pi^+ K^- \Xi^0)} = (9.6 \pm 3.2 \pm 1.8)\%$
- We study a mechanism for $\Omega_c \rightarrow \pi^+\Omega(2012)$ production through an external emission Cabibbo favored weak decay mode, where the $\Omega(2012)$ is dynamically generated from the interaction of $\bar{K}\Xi^*$ and $\eta\Omega$, with $\bar{K}\Xi$ as the main decay channel. N. Ikeno, W. H. Liang, G. Toledo, and E. Oset, PRD 106, 034022 (2022).

- \Rightarrow Our decay channels require three particles in the final state
- \Rightarrow Hadronization must occur to produce the extra particle.
- $\mathcal{L}_{W,\pi} \sim W^{\mu} \partial_{\mu} \phi. \quad \mathcal{L}_{\bar{q}Wq} \sim \bar{q}_{\text{fin}} W_{\mu} \gamma^{\mu} (1 \gamma_5) q_{\text{in}}$

$$V_P = C(q^0 + \vec{\sigma} \cdot \vec{q})$$
 C: unknown constant

The $\Omega_c \rightarrow \pi^+\Omega(2012) \rightarrow \pi^+(K^-\Xi^0)$ reaction

 $\pi^{+}K\Xi^{*}$ and $\pi^{+}\eta\Omega$ are produced

- => K Ξ ^{*} and $\eta\Omega$ interact and produce $\Omega(2012)$
- => Later $\Omega(2012)$ decays into K Ξ

The $\overline{K}\Xi$ mass distribution for Ω_{c} decay: $\frac{d\Gamma_{\text{signal}}}{dM_{\text{inv}}(K^{-}\Xi^{0})} = \frac{1}{(2\pi)^{3}} \frac{M_{\Xi}}{M_{\Omega_{c}}} p_{\pi} \tilde{p}_{K^{-}} \sum |\overline{t}|^{2},$

Amplitude t:

$$\begin{split} t &= W(K^{-}\Xi^{*0})G_{\bar{K}\Xi^{*}}(M_{\mathrm{inv}})\left(-\frac{1}{\sqrt{2}}\right)\underline{g_{R,\bar{K}\Xi^{*}}}\frac{1}{M_{\mathrm{inv}}-M_{R}+i\frac{\Gamma_{R}}{2}}\left(-\frac{1}{\sqrt{2}}\underline{g_{R,\bar{K}\Xi}}\right) \\ &+ W(\bar{K}^{0}\Xi^{*-})G_{\bar{K}\Xi^{*}}(M_{\mathrm{inv}})\left(-\frac{1}{\sqrt{2}}\right)\underline{g_{R,\bar{K}\Xi^{*}}}\frac{1}{M_{\mathrm{inv}}-M_{R}+i\frac{\Gamma_{R}}{2}}\left(-\frac{1}{\sqrt{2}}\underline{g_{R,\bar{K}\Xi}}\right) \\ &+ W(\eta\Omega)G_{\eta\Omega}(M_{\mathrm{inv}})\underline{g_{R,\eta\Omega}}\frac{1}{M_{\mathrm{inv}}-M_{R}+i\frac{\Gamma_{R}}{2}}\left(-\frac{1}{\sqrt{2}}\underline{g_{R,\bar{K}\Xi}}\right) \qquad R \text{ stand} \end{split}$$

 $p_{\pi^{+}} = \frac{\lambda^{1/2}(M_{\Omega_{c}}^{2}, m_{\pi}^{2}, M_{\text{inv}}^{2}(K^{-}\Xi^{0}))}{2M_{\Omega_{c}}}$ $\tilde{p}_{K^{-}} = \frac{\lambda^{1/2}(M_{\text{inv}}^{2}(K^{-}\Xi^{0}), m_{K^{-}}^{2}, M_{\Xi^{0}}^{2})}{2M_{\text{inv}}(K^{-}\Xi^{0})}$

R stands for $\Omega(2012)$ resonance

 $g_{R,\bar{K}\Xi^*}, g_{R,\eta\Omega}, g_{R,\bar{K}\Xi}$: Couplings to $\Omega(2012)$

W: Weight for the matrix elements of Ω_c $\uparrow\uparrow\uparrow$ going to π^+ and the different final states

We use the same values of g, q_{max} obtained before

Background for $\Omega_c \rightarrow \pi^+ K^- \Xi^0$ without going through the $\Omega(2012)$

(1) Direct reaction:

$$\frac{d\Gamma_{bac}^{(1)}}{dM_{inv}(K^{-}\Xi^{0})} = \frac{1}{(2\pi)^{3}} \frac{M_{\Xi}}{M_{\Omega_{c}}} p_{\pi} \tilde{p}_{K^{-}} \sum |\bar{t}_{bac}^{(1)}|^{2}$$

$$\sum |\bar{t}_{bac}^{(1)}|^{2} = C^{2} \frac{4}{27} \vec{q}^{2} \qquad q = p_{\pi^{+}} = \frac{\lambda^{1/2}(M_{\Omega_{c}}^{2}, m_{\pi}^{2}, M_{inv}^{2}(K^{-}\Xi^{0}))}{2M_{\Omega_{c}}}$$

 Ξ_0

(2) Reaction through intermediate states:

 K^{-}, \bar{K}^{0}, η

 $\Xi^{*0}, \Xi^{*-}, \Omega$

$$\frac{\mathrm{d}\Gamma_{\mathrm{bac}}^{(2)}}{\mathrm{d}M_{\mathrm{inv}}(K^{-}\Xi^{0})} = \frac{1}{(2\pi)^{3}} \frac{M_{\Xi}}{M_{\Omega_{c}}} p_{\pi^{+}} \tilde{p}_{K^{-}} \sum |\bar{t}_{\mathrm{bac}}^{(2)}|^{2}$$

$$\begin{split} t_{\text{bac}}^{(2)} &= W(K^- \Xi^{*0}) \cdot G_{\bar{K} \Xi^*}(M_{\text{inv}}) \cdot \left(-\frac{1}{\sqrt{2}}\right) \underline{\alpha} \vec{p}_{\bar{K}}^2 \left(-\frac{1}{\sqrt{2}}\right) \\ &+ W(\bar{K}^0 \Xi^{*-}) \cdot G_{\bar{K} \Xi^*}(M_{\text{inv}}) \cdot \left(-\frac{1}{\sqrt{2}}\right) \underline{\alpha} \vec{p}_{\bar{K}}^2 \left(-\frac{1}{\sqrt{2}}\right) \\ &+ W(\eta \Omega) \cdot G_{\eta \Omega}(M_{\text{inv}}) \cdot \underline{\beta} \vec{p}_{\bar{K}}^2 \left(-\frac{1}{\sqrt{2}}\right) \end{split}$$

 α , β : Potential parameters

We use the same values obtained before

 $V = \begin{pmatrix} \bar{K}\Xi^* & \eta\Omega & \bar{K}\Xi \\ 0 & 3F & \alpha q_{\text{on}}^2 \\ 3F & 0 & \beta q_{\text{on}}^2 \\ \alpha q_{\text{on}}^2 & \beta q_{\text{on}}^2 & 0 \end{pmatrix} \stackrel{\bar{K}\Xi^*}{\bar{K}\Xi} \qquad V_{\bar{K}\Xi^* \to \bar{K}\Xi} = \alpha \vec{q}_{\bar{K}}^2,$ $V = \begin{pmatrix} 0 & 3F & \alpha q_{\text{on}}^2 \\ \eta\Omega & \eta\Omega & \eta\Omega \\ \bar{K}\Xi & V_{\eta\Omega \to \bar{K}\Xi} = \beta \vec{q}_{\bar{K}}^2 \end{pmatrix}$

 Ω_c

Calculated total $\pi^+K^-\Xi^0$ production

We define ratios:

=>

$$R_{1} \equiv \frac{\Gamma_{\text{bac}}^{(1)}}{\Gamma_{\text{signal}}} = \frac{\Gamma_{\text{bac}}^{(1)} / \Gamma_{\Omega_{c}}}{\Gamma_{\text{signal}} / \Gamma_{\Omega_{c}}} = \frac{\mathcal{B}_{\text{bac}}^{(1)}}{\mathcal{B}_{\text{signal}}} \qquad R_{2} \equiv \frac{\Gamma_{\text{bac}}^{(2)}}{\Gamma_{\text{signal}}} = \frac{\Gamma_{\text{bac}}^{(2)} / \Gamma_{\Omega_{c}}}{\Gamma_{\text{signal}} / \Gamma_{\Omega_{c}}} = \frac{\mathcal{B}_{\text{bac}}^{(2)}}{\mathcal{B}_{\text{signal}}} = \frac{\mathcal{B}_{\text{bac}}^{(2)}}{\Gamma_{\text{signal}} / \Gamma_{\Omega_{c}}} = \frac{\mathcal{B}_{\text{bac}}^{(2)}}{\mathcal{B}_{\text{signal}}} = \frac{\mathcal{B}_{\text{bac}}^{$$

	R_1	R_2	$R_1 + R_2$
Set 1	0.23	0.16	0.39
Set 2	0.21	0.12	0.33
Set 3	0.21	0.20	0.41
Set 4	0.45	0.17	0.62

Calculated ratios with the parameter sets of g, q_{max} , α , and β , obtained before N. Ikeno, G. Toledo, E. Oset, PRD(2020) R. Pavao and E. Oset, EPJC78(2018)

Total $\pi^+K^-\Xi^0$ production stemming from the molecular picture <- Unknown constant C is implicitly $\mathcal{B}[\Omega_c \to \pi^+ K^- \Xi^0]_{\text{th}} = \mathcal{B}_{\text{signal}} + \mathcal{B}_{\text{bac}}^{(1)} + \mathcal{B}_{\text{bac}}^{(2)} = \mathcal{B}_{\text{signal}}(1 + R_1 + R_2)$ included in B_{signal} $\frac{\mathcal{B}[\Omega_c \to \pi^+ K^- \Xi^0]_{\text{th}}}{\mathcal{B}[\Omega_c \to \pi^+ K^- \Xi^0]_{\text{exp}}} = \frac{\mathcal{B}_{\text{signal}}}{\mathcal{B}[\Omega_c \to \pi^+ K^- \Xi^0]_{\text{exp}}} (1 + R_1 + R_2) = (9.6 \pm 3.2 \pm 1.8)(1 + R_1 + R_2)\% = 12.2 - 15.7\%$ with 38% uncertainty with 38% uncertainty Ratio measured by Belle

=> Based on the molecular picture, we obtain only about 12–20% of the total production with the three modes evaluated to produce $\pi^+K^-\Xi^0$, one resonant and two nonresonant

- There are two other sources we did not consider: $\Omega_c \to \Xi^0 \bar{K}^{*0} \to \Xi^0 K^- \pi^+$ (PDG data) $\Omega_c \to \pi^+ \Omega^* \to \pi^+ K^- \Xi^0$ (Quark model) ~85% of the total production
- \checkmark The consistency of the molecular picture with Belle data

K. L. Wang, Q. F. Lü, J. J. Xie, and X. H. Zhong, arXiv: 2203.04458

- We have studied the molecular picture for the $\Omega(2012)$ state with the coupled channels $\bar{K}\Xi^*$, $\eta\Omega$, $\bar{K}\Xi$
- We also have studied the $\Omega_c \rightarrow \pi^+\Omega(2012) \rightarrow \pi^+K^-\Xi^0$ reaction
- We found that the obtained results are consistent with all Belle results - $\Omega(2012)$ mass, width, and the ratio R of the $\Xi \pi K$ width to the ΞK width - All three channels account for about (12–20)% of the total $\Omega_c \rightarrow \pi^+ K^- \Xi^0$ decay rate
- We should note that the molecular structure of $\Omega(2012)$ is mostly a $\overline{K}\Xi^*$ bound state. However, it requires the interaction with the $\eta\Omega$ channel to bind, while neither the $\overline{K}\Xi^*$ nor the $\eta\Omega$ states would be bound by themselves.
- New information on experimental data is most welcome.

Two other sources we did not consider

$$\Omega_c \to \Xi^0 \bar{K}^{*0} \to \Xi^0 K^- \pi^+$$

($\Gamma_{7,}\Gamma_{8}$ of PDG data)

$$\frac{\Gamma_8}{\Gamma_7} = \frac{\mathcal{B}[\Xi^0 \bar{K}^{*0} \to \Xi^0 K^- \pi^+]}{\mathcal{B}[\Xi^0 K^- \pi^+]} = \frac{0.68 \pm 0.16}{1.20 \pm 0.18} = 0.57 \pm 0.16,$$

=> This means that about 60% of the $\Omega_{\rm c} \to \pi^+ {\rm K}^- \Xi^0$ decay comes from the $\Xi^0 \, {\rm K}^{*-} \to \pi^+ {\rm K}^- \Xi^0$ decay, which is not a part of our calculation

We find a total fraction of

$$0.82 \pm 0.16 \simeq 66 - 98\%$$
.

$$\Omega_c \to \pi^+ \Omega^* \to \pi^+ K^- \Xi^0$$

 Ω^* are any kind of excited $\Omega(sss)$ states

We can rely upon a theoretical Quark model calculation

K. L. Wang, Q. F. Lü, J. J. Xie, and X. H. Zhong, arXiv: 2203.04458

$$\frac{\mathcal{B}[\Omega_c \to \pi^+ \Omega(1^2 P_{3/2^-}) \to \pi^+ K^- \Xi^0]}{\mathcal{B}[\Omega_c \to \pi^+ K^- \Xi^0]} \simeq 0.08,$$

$$\frac{\mathcal{B}[\Omega_c \to \pi^+ \Omega(1^2 P_{1/2^-}) \to \pi^+ K^- \Xi^0]}{\mathcal{B}[\Omega_c \to \pi^+ K^- \Xi^0]} \simeq 0.11,$$

$$\frac{\mathcal{B}[\Omega_c \to \pi^+ \Omega(1^4 D_{1/2^+}) \to \pi^+ K^- \Xi^0]}{\mathcal{B}[\Omega_c \to \pi^+ K^- \Xi^0]} \simeq 0.04$$

$$\frac{\mathcal{B}[\Omega_c \rightarrow \pi^+ \Omega(1^4 D_{3/2^+}) \rightarrow \pi^+ K^- \Xi^0]}{\mathcal{B}[\Omega_c \rightarrow \pi^+ K^- \Xi^0]} \simeq 0.02$$

Summing all these contributions, we find a fraction of

$$\frac{\mathcal{B}[\Omega_c \to \pi^+ \Omega^* \to \pi^+ K^- \Xi^0]}{\mathcal{B}[\Omega_c \to \pi^+ K^- \Xi^0]} \simeq \underline{0.25}$$

W: Weight for the matrix elements of Ω_c $\uparrow\uparrow\uparrow$ going to π^+ and the different final states

$$\begin{split} &K^{-}\Xi^{*0}(S_{z}=3/2)\colon W=\frac{1}{\sqrt{3}}C(q^{0}+q_{z}),\\ &\bar{K}^{0}\Xi^{*-}(S_{z}=3/2)\colon W=\frac{1}{\sqrt{3}}C(q^{0}+q_{z}),\\ &\eta\Omega(S_{z}=3/2)\colon W=-\frac{1}{\sqrt{3}}C(q^{0}+q_{z}),\\ &K^{-}\Xi^{*0}(S_{z}=1/2)\colon W=\frac{1}{3}Cq_{+},\\ &\bar{K}^{0}\Xi^{*-}(S_{z}=1/2)\colon W=\frac{1}{3}Cq_{+},\\ &\eta\Omega(S_{z}=1/2)\colon W=-\frac{1}{3}Cq_{+},\\ &K^{-}\Xi^{0}(S_{z}=1/2)\colon W=\frac{\sqrt{2}}{3}Cq_{+},\\ &\bar{K}^{0}\Xi^{-}(S_{z}=1/2)\colon W=-\frac{\sqrt{2}}{3}Cq_{+}, \end{split}$$

$$V_P = C(q^0 + \vec{\sigma} \cdot \vec{q})$$

the matrix element of

$$\vec{\sigma} \cdot \vec{q} = \sigma_+ q_- + \sigma_- q_+ + \sigma_z q_z,$$

$$\sigma_+ = \frac{1}{2} (\sigma_x + i\sigma_y), \qquad \sigma_- = \frac{1}{2} (\sigma_x - i\sigma_y),$$

$$q_+ = q_x + iq_y, \qquad q_- = q_x - iq_y,$$

 q^0 is the energy of the π^+ and q its three-momentum

We can take the *z* direction in the π^+ direction, and when integrating over the π^+ angles, we get the angle averaged values of q_z^2 , q^0q_z , and $|q_+|^2$,

$$q_z^2 \to \frac{1}{3}\vec{q}^2, \qquad q^0 q_z \to 0, \qquad |q_+|^2 = q_x^2 + q_y^2 \to \frac{2}{3}\vec{q}^2$$