Based on arXiv:2208.14858

Predictions on the molecular states Ω_{cc} , Ω_{bb} and Ω_{bc}

Wen-Fei Wang

IFIC, Universidad de Valencia

A. Feijoo IFIC, UV With J. Song Beihang U. E. Oset IFIC, UV

> QNP2022 2022-09-06

- > Motivation for Ω_{cc} , Ω_{bb} and Ω_{bc}
- > Formalism
- > Results and discussions
- > Summary

> Hidden charm pentaquarks *P_c* and *P_{cs}* from LHCb: PRL 115, 072001 (2015); PRL 122, 222001 (2019); PRL 128, 062001 (2022); Sci.Bull.66, 1278 (2021)

> Doubly charmed tetraquark T_{cc} from LHCb Nat.Phys. 18, 751(2022)

Doubly heavy baryons Ω_{bc} and Ξ_{bc} from LHCb Chin.Phys.C 45, 093002 (2021)

> Hidden charm pentaquarks *P_c* and *P_{cs}* from LHCb: PRL 115, 072001 (2015); PRL 122, 222001 (2019); PRL 128, 062001 (2022); Sci.Bull.66, 1278 (2021)

> Doubly charmed tetraquark T_{cc} from LHCb Nat.Phys. 18, 751(2022)

Doubly heavy baryons Ω_{bc} and Ξ_{bc} from LHCb Chin.Phys.C 45, 093002 (2021)

2) The molecular Ω_c states

Five narrow excited Ω_c states from LHCb: $\Omega_c(3000), \Omega_c(3050), \Omega_c(3066), \Omega_c(3090), \Omega_c(3119)$ PRL 118, 182001 (2017); PRD 97, 051102 (2018); PRD 104, L091102 (2021)

2) The molecular Ω_c states

Five narrow excited Ω_c states from LHCb: $\Omega_c(3000), \Omega_c(3050), \Omega_c(3066), \Omega_c(3090), \Omega_c(3119)$ PRL 118, 182001 (2017); PRD 97, 051102 (2018); PRD 104, L091102 (2021)

PHYSICAL REVIEW D 10	4, L091102 (2021)	
$\Omega_c(3050)^0$	Significance ΔM	9.9σ 88.5 ± 0.3 ± 0.2 MeV
	m Γ P	$\begin{array}{c} 3050.1 \pm 0.3 \pm 0.2 \substack{+0.19 \\ -0.22} \\ < 1.6 \text{ MeV}, 95\% \text{ CL} \\ 0.15 \pm 0.02 \pm 0.02 \end{array}$
$\Omega_c(3090)^0$	Significance ΔM m Γ	7.8σ $129.4 \pm 1.1 \pm 1.0 \text{ MeV}$ $3091.0 \pm 1.1 \pm 1.0^{+0.19}_{-0.22} \text{ MeV}$ $7.4 \pm 3.1 \pm 2.8 \text{ MeV}$
	\mathcal{P}	$0.19 \pm 0.02 \pm 0.04$

2) The molecular Ω_c states

Five narrow excited Ω_c states from LHCb: $\Omega_c(3000), \Omega_c(3050), \Omega_c(3066), \Omega_c(3090), \Omega_c(3119)$

 PHYSICAL REVIEW D 97, 094035 (2018)
 Molecular Ω_c states generated from coupled meson-baryon channels

 V. R. Debastiani,^{1,*} J. M. Dias,^{1,2,†} W. H. Liang,^{3,‡} and E. Oset^{1,§}
 ¹Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia—CSIC, Institutos de Investigación de Paterna, Aptdo. 22085, 46071 Valencia, Spain ²Instituto de Física, Universidade de São Paulo,
 Rua do Matão, 1371, Butantã, São Paulo, São Paulo CEP 05508-090, Brazil ³Department of Physics, Guangxi Normal University, Guilin 541004, China
 (Received 13 February 2018; published 31 May 2018)

 We have investigated Ω_c states that are dynamically generated from the meson-baryon interaction. We use an extension of the local hidden gauge to obtain the interaction from the exchange of vector mesons

2) The molecular Ω_c states

only show the results with the nseudoscalar-harvon inter-

Five narrow excited Ω_c states from LHCb:

choose the same cutoff as in the $I^P = 1/2^-$ sector we find a

 $\Omega_c(3000), \Omega_c(3050), \Omega_c(3066), \Omega_c(3090), \Omega_c(3119)$

	MOLECULAR S	\mathbf{D}_c STATES GENE	ERATED FROM		PHYS.	REV. D 9	7 , 094035	(2018)
$\Omega_c(3050)$	TABLE VI. The c MeV.	oupling constants to	o various channels for	the poles in the J^P	$= 1/2^{-}$ sector, with	$q_{\rm max} = 650$) MeV, and	$g_i G_i^{II}$ in
	3054.05 + i0.44	$\Xi_c \bar{K}$	$\Xi_c'ar{K}$	ΞD	$\Omega_c\eta$	ΞD^*	$\Xi_c ar{K}^*$	$\Xi_c' \bar{K}^*$
	$rac{g_i}{g_i G_i^{II}}$	$-0.06 + i0.14 \\ -1.40 - i3.85$	$ 1.94 + i0.01 \\ -34.41 - i0.30 $	$-2.14 + i0.26 \\ 9.33 - i1.10$	$\frac{1.98 + i0.01}{-16.81 - i0.11}$	0 0	0 0	0 0
	3091.28 + i5.12	$\Xi_c ar{K}$	$\Xi_c' \bar{K}$	ΞD	$\Omega_c \eta$	ΞD^*	$\Xi_c ar{K}^*$	$\Xi_c' \bar{K}^*$
$\Omega_c(3090)$	$g_i \ g_i G_i^{II}$	0.18 - i0.37 5.05 + i10.19	0.31 + i0.25 -9.97 - i3.67	5.83 - i0.20 -29.82 + i0.31	$0.38 + i0.23 \\ -3.59 - i2.23$	0 0	0 0	0 0

2) The molecular Ω_c states

 $\Omega_c \implies \Omega_{cc}, \Omega_{bb}, \Omega_{bc}$

PHYS. REV. D **97**, 094035 (2018) $g = \frac{m_V}{2f_{\pi}}$ with $m_V = 800$ MeV

$$\mathcal{L}_{\rm VPP} = -ig \left\langle \left[P, \partial_{\mu} P\right] V^{\mu} \right\rangle, \mathcal{L}_{\rm VVV} = ig \left\langle \left(V^{\mu} \partial_{\nu} V_{\mu} - \partial_{\nu} V^{\mu} V_{\mu}\right) V^{\nu} \right\rangle.$$

$$P = \begin{pmatrix} \frac{1}{\sqrt{2}}\pi^{0} + \frac{1}{\sqrt{3}}\eta + \frac{1}{\sqrt{6}}\eta' & \pi^{+} & K^{+} & \bar{D}^{0} \\ \pi^{-} & -\frac{1}{\sqrt{2}}\pi^{0} + \frac{1}{\sqrt{3}}\eta + \frac{1}{\sqrt{6}}\eta' & K^{0} & D^{-} \\ K^{-} & \bar{K}^{0} & -\frac{1}{\sqrt{3}}\eta + \sqrt{\frac{2}{3}}\eta' & D^{-}_{s} \\ D^{0} & D^{+} & D^{+}_{s} & \eta_{c} \end{pmatrix}, \qquad P = \begin{pmatrix} \frac{1}{\sqrt{2}}\pi^{0} + \frac{1}{\sqrt{3}}\eta + \frac{1}{\sqrt{6}}\eta' & \pi^{+} & K^{+} & B^{+} \\ \pi^{-} & -\frac{1}{\sqrt{2}}\pi^{0} + \frac{1}{\sqrt{3}}\eta + \frac{1}{\sqrt{6}}\eta' & K^{0} & B^{0} \\ K^{-} & \bar{K}^{0} & -\frac{1}{\sqrt{3}}\eta + \sqrt{\frac{2}{3}}\eta' & B^{0}_{s} \\ B^{-} & \bar{B}^{0} & \bar{B}^{0}_{s} & \eta_{b} \end{pmatrix}, \qquad V = \begin{pmatrix} \frac{1}{\sqrt{2}}\rho^{0} + \frac{1}{\sqrt{2}}\omega & \rho^{+} & K^{*+} & \bar{D}^{*0} \\ \rho^{-} & -\frac{1}{\sqrt{2}}\rho^{0} + \frac{1}{\sqrt{2}}\omega & \bar{K}^{*0} & \bar{D}^{*-} \\ K^{*-} & \bar{K}^{*0} & \phi & D^{*-}_{s} \\ D^{*0} & D^{*+} & D^{*+}_{s} & J/\psi \end{pmatrix}, \qquad V = \begin{pmatrix} \frac{1}{\sqrt{2}}\rho^{0} + \frac{1}{\sqrt{2}}\omega & \rho^{+} & K^{*+} & B^{*+} \\ \rho^{-} & -\frac{1}{\sqrt{2}}\rho^{0} + \frac{1}{\sqrt{2}}\omega & K^{*0} & B^{*0} \\ K^{*-} & \bar{K}^{*0} & \phi & B^{*0}_{s} \\ B^{*-} & \bar{B}^{*0} & \bar{B}^{*0}_{s} & \Upsilon \end{pmatrix},$$

For charm sector

For bottom sector

$$\widetilde{\mathcal{L}}_{\text{VBB}} \equiv g q \bar{q}(V),$$

 $q\bar{q}$ is the vector wave function in terms of quarks

$$\widetilde{\mathcal{L}}_{VBB} \equiv g \begin{cases} \frac{1}{\sqrt{2}} (u\bar{u} - d\bar{d}), & \rho^0 \\ \frac{1}{\sqrt{2}} (u\bar{u} + d\bar{d}), & \omega \\ s\bar{s}, & \phi \end{cases}$$

 $\widetilde{\mathcal{L}}_{\text{VBB}} \equiv g q \bar{q}(V),$

$q\bar{q}$ is the vector wave function in terms of quarks

$$\widetilde{\mathcal{L}}_{VBB} \equiv g \begin{cases} \frac{1}{\sqrt{2}} (u\bar{u} - d\bar{d}), & \rho^0 \\ \frac{1}{\sqrt{2}} (u\bar{u} + d\bar{d}), & \omega \\ s\bar{s}, & \phi \end{cases}$$

State	I,J	flavor	spin
Ξ_{cc}^{++}	1/2, 1/2	ccu	$\chi_{MS}(12)$
Ξ_{cc}^+	1/2, 1/2	ccd	$\chi_{MS}(12)$
Ω_{cc}^+	0, 1/2	ccs	$\chi_{MS}(12)$
Ξ_c^+	1/2, 1/2	$\frac{1}{\sqrt{2}}c(us-su)$	$\chi_{MA}(23)$
Ξ_c^0	1/2, 1/2	$\frac{1}{\sqrt{2}}c(ds-sd)$	$\chi_{MA}(23)$
$\Xi_c^{'+}$	1/2, 1/2	$\frac{1}{\sqrt{2}}c(us+su)$	$\chi_{MS}(23)$
$\Xi_c^{\prime 0}$	1/2, 1/2	$\frac{1}{\sqrt{2}}c(ds+sd)$	$\chi_{MS}(23)$
Ω_c^0	0, 1/2	∨ <i>2</i> CSS	$\chi_{MS}(23)$

 $\widetilde{\mathcal{L}}_{\text{VBB}} \equiv g q \bar{q}(V),$

$q\bar{q}$ is the vector wave function in terms of quarks

$$\widetilde{\mathcal{L}}_{VBB} \equiv g \begin{cases} \frac{1}{\sqrt{2}} (u\bar{u} - d\bar{d}), & \rho^0 \\ \frac{1}{\sqrt{2}} (u\bar{u} + d\bar{d}), & \omega \\ s\bar{s}, & \phi \end{cases}$$

State	I, J	flavor	spin
Ξ_{cc}^{++}	1/2, 1/2	ccu	$\chi_{MS}(12)$
Ξ_{cc}^+	1/2, 1/2	ccd	$\chi_{MS}(12)$
Ω_{cc}^+	0, 1/2	CCS	$\chi_{MS}(12)$
Ξ_c^0 $\Xi_c^{\prime +}$ $\Xi_c^{\prime 0}$ Ω_c^0	$\chi_{MS}(12) = \frac{1}{\sqrt{6}}$ $\chi_{MS}(23) = \frac{1}{\sqrt{6}}$ $\chi_{MA}(23) = \frac{1}{\sqrt{2}}$	$\frac{1}{2}(\uparrow\downarrow\uparrow+\downarrow\uparrow\uparrow-2\uparrow\uparrow\downarrow)$ $\frac{1}{2}(\uparrow\downarrow\uparrow+\uparrow\uparrow\downarrow-2\downarrow\uparrow\uparrow)$ $\frac{1}{2}(\uparrow\uparrow\downarrow-\uparrow\downarrow\uparrow).$	$\chi_{MA}(23) \ \chi_{MA}(23) \ \chi_{MA}(23) \ \chi_{MS}(23) \ \chi_{MS}(23) \ \chi_{MS}(23) \ \chi_{MS}(23)$

$$V_{ij} = -\frac{1}{4f_{\pi}^2}(p_1^0 + p_3^0)C_{ij} ,$$

$$V_{ij} = -\frac{1}{4f_{\pi}^2}(p_1^0 + p_3^0)C_{ij} ,$$

TABLE	E V: Coef	ficients C_a	$_{ij}$ for the l	PB sector	with J	$P = \frac{1}{2}^{-}$	•			
=		$\Xi_{cc}\bar{K}$	$\Omega_{cc}\eta$	$\Xi_c D$	$\Xi_c'L$)		1.1		
-	$\Xi_{cc}\bar{K}$	2	$\frac{2\sqrt{2}}{\sqrt{3}}$	$\frac{-\sqrt{3}}{2\sqrt{2}}\lambda$	$\frac{1}{2\sqrt{2}}$	λ				
	$\Omega_{cc}\eta$		0	$-\frac{1}{2}\lambda$	$\frac{-1}{2\sqrt{3}}$	λ				
	$\Xi_c D$			2	0					
-	$\Xi_c'D$				2					
$\lambda \approx 0.25$			TAI	BLE VI: (-Ω _c Coeffici	c	for the V	B sector wi	th $J^P =$	$\frac{1}{2}^{-}, \frac{3}{2}^{-}.$
PHYS. REV. D 97, 0940	35 (2018)					$\Xi_c D^*$	$\Omega_{cc}\omega$	$\Xi_{cc}\bar{K}^*$	$\Xi_c' D^*$	_
,	, í			Ξ_c	D^*	2	$\frac{-\sqrt{3}}{2\sqrt{2}}\lambda$	$\frac{-\sqrt{3}}{2\sqrt{2}}\lambda$	0	
0	0			Ω_{co}	$_{c}\omega$		0	1	$\frac{-1}{2\sqrt{2}}\lambda$	
$\lambda_b pprox m_V^2/m$	$v_{B^*}^2$			Ξ_{cc}	K^*			2	$\frac{1}{2\sqrt{2}}\lambda$	
negligible				Ξ_c'	D^*				2	:

$$V_{ij} = -\frac{1}{4f_{\pi}^2} (p_1^0 + p_3^0) C_{ij} ,$$

BS equation

$$T = [1 - VG]^{-1}V$$

BS equation

$$V_{ij} = -\frac{1}{4f_{\pi}^2}(p_1^0 + p_3^0)C_{ij} ,$$

$$I$$

$$T = [1 - VG]^{-1}V$$

G is the diagonal loop function for the meson baryon intermediate state

$$V_{ij} = -\frac{1}{4f_{\pi}^2}(p_1^0 + p_3^0)C_{ij},$$

$$[1 - VG]^{-1}V$$

 $\overline{\mathbf{N}}$

BS equation

T =

G is the diagonal loop function for the meson baryon intermediate state

$$\begin{split} G_j^{II} &= G_j^I + i \frac{2M_j q}{4\pi\sqrt{s}} , \qquad \mathrm{Re}\sqrt{s} > m_j + M_j \\ q &= \frac{\lambda^{1/2}(s, m_j^2, M_j^2)}{2\sqrt{s}}, \end{split}$$

$$V_{ij} = -\frac{1}{4f_{\pi}^2}(p_1^0 + p_3^0)C_{ij},$$

$$[]$$

$$-VG]^{-1}V$$

ス

BS equation

$$T = [1 - VG]^{-1}V$$

G is the diagonal loop function for the meson baryon intermediate state

$$T_{ij} = \frac{g_i g_j}{\sqrt{s - z_R}} \quad Z_R: \ (M, i\Gamma/2)$$

$$G_j^{II} = G_j^I + i \frac{2M_j q}{4\pi\sqrt{s}} , \qquad \operatorname{Re}\sqrt{s} > m_j + M_j$$

$$\lambda^{1/2}(s, m_j^2, M_j^2)$$

 $q = \frac{\chi - (s, m_j, m_j)}{2\sqrt{s}}$

$$\begin{split} V_{ij} &= -\frac{1}{4f_{\pi}^2}(p_1^0 + p_3^0)C_{ij} \,, \\ & \downarrow \\ \\ \textbf{BS equation} \\ T &= \begin{bmatrix} 1 - VG \end{bmatrix}^{-1}V \\ & \downarrow \\ & & \\ & & \\ I \\ & & \\$$

<u><i>L</i>_{CC}</u> 1 ⁺									
		$J^P = \frac{1}{2}$	$\frac{1}{2}$ sector from <i>P</i> .	$B(\frac{1}{2})$					
Poles		$\Xi_{cc}\bar{K}$	$\Omega_{cc}\eta$	$\Xi_c D$	$\Xi_c'D$				
1060.96	g_i	2.63	1.55	-1.10	0.26				
4009.00	$g_i G_i^{II}$	-40.42	-13.26	3.59	-0.65				
4205 22 + 40.04	g_i	0.10 + i0.20	0.04 + i0.09	6.25 - i0.04	0.09 + i0.01				
4203.22 ± 10.94	$g_i G_i^{II}$	-5.86 - i1.84	-0.57 - i1.32	-31.79 + i0.06	-0.30 - i0.05				
4210.76 ± 30.99	g_i	0.02 + i0.01	-0.13 - i0.04	-0.02 + i0.00	6.35 + i0.00				
4010.10 + 10.20	$g_i G_i^{II}$	-0.45 + i0.64	3.47 - i0.96	0.23 - i0.01	-31.95 - i0.05				

Note: We write in bold face for the most important channel.

$J^{P} = \frac{1}{2}^{-}, \frac{3}{2}^{-}$ sector from $VB(\frac{1}{2}^{+})$										
Poles		$\Xi_c D^*$	$\Omega_{cc}\omega$	$\Xi_{cc}\bar{K}^*$	$\Xi_c' D^*$					
1332.86	g_i	6.51	-0.70	-1.35	-0.07					
4002.00	$g_i G_i^{II}$	-29.78	5.66	9.74	0.23					
4405 47	g_i	1.27	1.41	3.81	0.83					
4400.47	$g_i G_i^{II}$	-8.44	-15.17	-35.89	-3.33					
1116 20	g_i	-0.08	-0.32	-0.24	6.58					
4440.29	$g_i G_i^{II}$	0.73	4.34	2.81	-30.80					

Ω_{cc}		$J^P = {}$	$\frac{1}{2}^{-}$ sector from <i>P</i> .	$B(rac{1}{2}^+)$	
Poles		$\Xi_{cc}\bar{K}$	$\Omega_{cc}\eta$	$\Xi_c D$	$\Xi_c'D$
4060.86	g_i	2.63	1.55	-1.10	0.26
4009.80	$g_i G_i^{II}$	-40.42	-13.26	3.59	-0.65
$4205.22 \pm i0.04$	g_i	0.10 + i0.20	0.04 + i0.09	6.25 - i0.04	0.09 + i0.01
4205.22 ± 10.94	$g_i G_i^{II}$	-5.86 - i1.84	-0.57 - i1.32	-31.79 + i0.06	-0.30 - i0.05
$4310.76 \pm i0.28$	g_i	0.02 + i0.01	-0.13 - i0.04	-0.02 + i0.00	6.35 + i0.00
4010.10 + 10.20	$g_i G_i^{II}$	-0.45 + i0.64	3.47 - i0.96	0.23 - i0.01	-31.95 - i0.05

'			
$\Xi_{cc}\bar{K}$	$\Omega_{cc}\eta$	$\Xi_c D$	$\Xi_c'D$
4115	4263	4338	4448

 Ω_c

Ω_{cc}		$J^P = {}$	$\frac{1}{2}^{-}$ sector from P	$B(rac{1}{2}^+)$	
Poles		$\Xi_{cc}\bar{K}$	$\Omega_{cc}\eta$	$\Xi_c D$	$\Xi_c'D$
4060.96	g_i	2.63	1.55	-1.10	0.26
4009.80	$g_i G_i^{II}$	-40.42	-13.26	3.59	-0.65
$4205.22 \pm i0.04$	g_i	0.10 + i0.20	0.04 + i0.09	6.25 - i0.04	0.09 + i0.01
4203.22 ± 10.94	$g_i G_i^{II}$	-5.86 - i1.84	-0.57 - i1.32	-31.79 + i0.06	-0.30 - i0.05
4210 76 + 30 22	g_i	0.02 + i0.01	-0.13 - i0.04	-0.02 + i0.00	6.35 + i0.00
4010.70 + 10.20	$g_i G_i^{II}$	-0.45 + i0.64	3.47 - i0.96	0.23 - i0.01	-31.95 - i0.05

PDG $m_s pprox$ 100 MeV, $m_c pprox$ 1270 MeV

PHYS. REV. D 97, 094035 (2018)

3054.05 + i0.44	$\Xi_c ar{K}$	$\Xi_c'ar{K}$	ΞD	$\Omega_c\eta$
$g_i \ g_i G_i^{II}$	-0.06 + i0.14 -1.40 - i3.85	$\frac{1.94 + i0.01}{-34.41 - i0.30}$	-2.14 + i0.26 9.33 - i1.10	1.98 + i0.01 -16.81 - i0.11
3091.28 + i5.12	$\Xi_c ar{K}$	$\Xi_c' ar{K}$	ΞD	$\Omega_c\eta$
$\overline{g_i}$	0.18 - i0.37	0.31 + i0.25	5.83 - i0.20	0.38 + i0.23

	Ω_{cc}		J^P	$=\frac{1}{2}^{-}$ sector from	$PB(\frac{1}{2}^+)$			
	Poles		$\Xi_{cc}\bar{K}$	$\Omega_{cc}\eta$	Ξ	$_{c}D$	$\Xi_c'D$	
	4060.86	g_i	2.63	1.55	—1	1.10	0.26	
	4009.00	$g_i G_i^{II}$	-40.42	-13.26	3.	.59	-0.65	
ſ	$4205\ 22 \pm i0\ 94$	g_i	0.10 + i0.20	0.04 + i0.09	6.25 -	- <i>i</i> 0.04	0.09 + i0.01	
<u> </u>	1205.22 10.54	$g_i G_i^{II}$	-5.86 - i1.8	4 -0.57 - i1.3	2 -31.79	+i0.06	-0.30 - i0.05	5
	$4310.76 \pm i0.28$	g_i	0.02 + i0.01	-0.13 - i0.0	4 -0.02	+ i0.00	6.35 + i0.00	0
	1010.10 00.20	$g_i G_i^{II}$	-0.45 + i0.6	3.47 - i0.96	6 0.23 -	- <i>i</i> 0.01	-31.95 - i0.0	05
	PHYS. REV. D	PD 97, 094	G $m_s \approx 10$ 035 (2018)	DO MeV, $m_c \approx$	≈ 1270 Me	V		
	3054.05 + i0.44		$\Xi_c \bar{K}$	$\Xi_c' ar{K}$	ΞD		$\Omega_c\eta$	
	$\overline{g_i}$	-0.0	06 + i0.14	1.94 + i0.01	-2.14 + i	0.26	1.98 + i0.01	
Ω_c .	$\underbrace{g_i G_i^{II}}_{=================================$	-1.4	40 - i3.85	-34.41 - <i>i</i> 0.30	9.33 — i	1.10	-16.81 - <i>i</i> 0.11	
-	3091.28 + i5.12		$\Xi_c \bar{K}$	$\Xi_c'ar{K}$	ΞD		$\Omega_c\eta$	
	g_i	0.18	-i0.37	0.31 + i0.25	5.83 — i	i0.20	0.38 + i0.23	
	$a:G^{II}$	5 05	$\pm i10.10$	-0.07 - i3.67	$-29.82 \pm i$	i0 31	-350 - i223	

 Ω_{cc}

$J^P = \frac{3}{2}$ sector from $PB(\frac{3}{2})$									
Poles		$\Xi_{cc}^* ar{K}$	$\Omega_{cc}^*\eta$	$\Xi_c^* D$					
/123.85	g_i	2.62	1.55	0.84					
4120.00	$g_i G_i^{II}$	-40.61	-13.14	-2.09					
4380.36 + i0.73	g_i	-0.01 - i0.15	0.02 - i0.05	6.28 - i0.03					
	$g_i G_i^{II}$	4.71 + i0.76	0.41 + i1.37	-31.94 + i0.05					

P	=	$\frac{3}{2}$	sector	from	$PB(\frac{3}{2}^+)$	-
		9	200002		\ 9	1

$J^P = \frac{1}{2}^{-}, \frac{3}{2}^{-}, \frac{5}{2}^{-}$ sector from $VB(\frac{3}{2}^{+})$									
Poles		$\Omega_{cc}^*\omega$	$\Xi_{cc}^* \bar{K}^*$	$\Xi_c^* D^*$					
4446 59	g_i	1.59	3.93	2.64					
4440.05	$g_i G_i^{II}$	-16.03	-35.31	-9.69					
4520.38	g_i	-0.18	-0.94	6.10					
	$g_i G_i^{II}$	2.78	12.44	-29.41					

 Ω_{bb}

$J^P = \frac{1}{2}^{-} \text{sector from } PB(\frac{1}{2}^+)$											
Poles		$\Omega_{bb}\eta$	$\Xi_{bb}\bar{K}$	$\Xi_b \bar{B}$	$\Xi_b' \bar{B}$						
10741.65	g_i	1.50	2.72	0	0						
10741.05	$g_i G_i^{II}$	-25.56	-34.78	0	0						
10864 15	g_i	0	0	11.87	0						
10004.10	$g_i G_i^{II}$	0	0	-20.43	0						
11001.63	g_i	0	0	0	11.87						
	$g_i G_i^{II}$	0	0	0	-20.43						

	J^P	$=\frac{1}{2}^{-},\frac{3}{2}^{+}$	sector from	$\operatorname{m} VB(\frac{1}{2}^+)$)
Poles		$\Omega_{bb}\omega$	$\Xi_b \bar{B}^*$	$\Xi_{bb}\bar{K}^*$	$\Xi_b'\bar{B}^*$
10000 88	g_i	0	11.92	0	0
10909.00	$g_i G_i^{II}$	0	-20.35	0	0
11047.36	g_i	0	0	0	11.92
	$g_i G_i^{II}$	0	0	0	-20.34

 Ω_{bb}

	$J^P = \frac{3}{2}$	sector from	$m PB(\frac{3}{2}^+)$	
Poles		$\Omega_{bb}^*\eta$	$\Xi_{bb}^* \bar{K}$	$\Xi_b^*ar{B}$
10770.01	g_i	1.50	2.71	0
10770.91	$g_i G_i^{II}$	-25.70	-34.62	0
11018 56	g_i	0	0	11.87
11010.00	$g_i G_i^{II}$	0	0	-20.43

J^P	$=rac{1}{2}^{-},rac{3}{2}^{-}$	$, \frac{5}{2}^{-}$ sect	or from V	$CB(rac{3}{2}^+)$
Poles		$\Omega_{bb}^*\omega$	$\Xi_{bb}^* \bar{K}^*$	$\Xi_b^* \bar{B}^*$
11064 30	g_i	0	0	11.94
11004.00	$g_i G_i^{II}$	0	0	-20.37

Ω_{bc}

IFIC

_			J	$P = \frac{1}{2}^{-}$ sector	or from $PB(\frac{1}{2})$	$\frac{1}{2}^+)$			
Poles		$\Xi_{bc}\bar{K}$	$\Xi_{bc}'\bar{K}$	$\Omega_{bc}\eta$	$\Omega_{bc}^{\prime}\eta$	$\Xi_b D$	$\Xi_c \bar{B}$	$\Xi_b'D$	$\Xi_c'\bar{B}$
7362.26	g_i	2.64	0	1.57	0	1.70	0	0	0
1302.20	$g_i G_i^{II}$	-40.41	0	-13.52	0	-5.35	0	0	0
7302 60	g_i	0	2.61	0	1.51	0	0	-0.73	0
1392.00	$g_i G_i^{II}$	0	-41.08	0	-12.83	0	0	1.81	0
7514.22 ± 32.21	g_i	-0.14 - i0.27	0	-0.05 - i0.13	0	6.19 - i0.08	0	0	0
1014.02 ± 12.21	$g_i G_i^{II}$	9.18 + i2.42	0	0.83 + i2.04	0	-32.11 + i0.12	0	0	0
7566 65	g_i	0	0	0	0	0	11.50	0	0
1000.00	$g_i G_i^{II}$	0	0	0	0	0	-20.01	0	0
$7641.20 \pm i2.26$	g_i	0	-0.06 - i0.03	0	0.34 + i0.11	0	0	6.50+i0.02	0
1041.20 + 12.20	$g_i G_i^{II}$	0	1.60 - i1.76	0	-10.29 + i2.74	0	0	-32.20 - i0.41	0
7674 20	g_i	0	0	0	0	0	0	0	11.53
7674.29	$g_i G_i^{II}$	0	0	0	0	0	0	0	-20.05

Ω_{bc}

IFIC

			J^P	$=\frac{1}{2}^{-},\frac{3}{2}^{-}$ s	ector from V	$VB(rac{1}{2}^+)$			
Poles		$\Omega_{bc}\omega$	$\Xi_c \bar{B}^*$	$\Xi_b D^*$	$\Xi_{bc}\bar{K}^*$	$\Omega_{bc}^{\prime}\omega$	$\Xi_{bc}'\bar{K}^*$	$\Xi_c'\bar{B}^*$	$\Xi_b' D^*$
7612 44	g_i	0	11.56	0	0	0	0	0	0
1012.11	$g_i G_i^{II}$	0	-19.93	0	0	0	0	0	0
7697 73	g_i	1.09	0	6.36	2.14	0	0	0	0
1021.15	$g_i G_i^{II}$	-9.13	0	-28.05	-15.65	0	0	0	0
7707 67	g_i	1.19	0	-2.17	3.40	0	0	0	0
1101.01	$g_i G_i^{II}$	-13.85	0	14.00	-33.94	0	0	0	0
7716 28	g_i	0	0	0	0	1.43	4.03	0	-1.77
1110.20	$g_i G_i^{II}$	0	0	0	0	-14.61	-37.19	0	6.54
7720.07	g_i	0	0	0	0	0	0	11.59	0
1120.01	$g_i G_i^{II}$	0	0	0	0	0	0	-19.97	0
7777 47	g_i	0	0	0	0	0.78	0.38	0	6.50
	$g_i G_i^{II}$	0	0	0	0	-11.04	-4.84	0	-30.09

 Ω_{bc}

	J^{I}	$=\frac{1}{2}$ sector from	$m PB(\frac{1}{2})$		
Poles		$\Xi_{bc}^*ar{K}$	$\Omega_{bc}^*\eta$	$\Xi_b^* D$	$\Xi_c^* \bar{B}$
7415 55	g_i	2.63	1.56	1.21	0
7410.00	$g_i G_i^{II}$	-40.83	-13.37	-3.05	0
$7667.65 \pm i1.40$	g_i	-0.02 - i0.20	0.02 - i0.06	6.25 - i0.05	0
$7007.00 \pm i1.40$	$g_i G_i^{II}$	6.82 + i0.98	0.53 + i1.88	-32.26 + i0.09	0
7740.03	g_i	0	0	0	11.52
1140.30	$g_i G_i^{II}$	0	0	0	-20.08

$J^P =$	$\frac{3}{2}^{-}$ sector from .	$PB(\frac{3}{2}^+)$
<u> </u>	2	-

	$J^P =$	$\frac{1}{2}^{-}, \frac{3}{2}^{-}, \frac{5}{2}$	sector from	m $VB(\frac{3}{2}^+)$	
Poles		$\Omega_{bc}^*\omega$	$\Xi_{bc}^* \bar{K}^*$	$\Xi_b^* D^*$	$\Xi_c^* \bar{B}^*$
7790 11	g_i	1.60	3.82	3.54	0
1129.11	$g_i G_i^{II}$	-15.96	-33.56	-12.92	0
7786 71	g_i	0	0	0	11.61
(180.11	$g_i G_i^{II}$	0	0	0	-19.99
7811 82	g_i	-0.23	-1.24	5.71	0
1011.02	$g_i G_i^{II}$	3.72	16.77	-28.48	0

- 1). With the inputs successfully used in Ω_c and P_c , P_{cs} states, and using an extension of the local hidden gauge approach, we looked into the interactions of meson-baryon channels leading to the states Ω_{cc} , Ω_{bb} and Ω_{bc} .
- 2). We found many bound states or resonances in each sector. And the Ω_{bc} sector is more rich, has more states.
- **3)**. These states are presently under the investigation by the LHCb collaboration.

- 1). With the inputs successfully used in Ω_c and P_c , P_{cs} states, and using an extension of the local hidden gauge approach, we looked into the interactions of meson-baryon channels leading to the states Ω_{cc} , Ω_{bb} and Ω_{bc} .
- 2). We found many bound states or resonances in each sector. And the Ω_{bc} sector is more rich, has more states.
- **3)**. These states are presently under the investigation by the LHCb collaboration.

Thank You!