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package [57]. The shape of misidentified decays
Ω−

b → Ξþ
c K−K− is fixed based on simulation. The yield

ratio NΞþ
c K−K−=NΞþ

c K−π− is fixed to 2.8% based on
jVusj2=jVudj2 ≈ 5% corrected by the difference in
reconstruction efficiency and the phase space. The fit
returns a combined mass resolution of 17.9" 1.3 MeV,
a yield of NΞþ

c K−π− ¼ 240" 17 and an Ω−
b mass,

mðΩ−
b Þ ¼ 6044.3" 1.2 MeV, where the uncertainty is

statistical only (see Table I). The Dalitz plot distribution
of the candidates, with a mass within two standard
deviations of the Ω−

b peak, is shown in Fig. 2. Excited
Ω0

c baryons appear in the Ξþ
c K− projection while no

excited Ξ0
c states are clearly visible in the Ξþ

c π− system.
The branching fraction of Ω−

b → Ξþ
c K−π− decays is

measured relative to the normalization channel
Ω−

b → Ω0
cπ−, with Ω0

c → pK−K−πþ. Similar selection
requirements as the Ω−

b → Ξþ
c K−π− mode are applied to

the Ω−
b → Ω0

cπ− candidates. The selections of the two

decay modes differ in the requirements applied to the
invariant mass of the pK−πþ and pK−K−πþ systems to
select Ξþ

c and Ω0
c candidates, respectively. A kinematic

fit is applied to the Ω−
b decay where the Ω0

c candidate
mass is constrained to its known value [56]. The two
largest background components are due to the
partially reconstructed decays Ω−

b → Ω0
cρ−ð→ π−π0Þ, and

Ω−
b → Ω&0

c ð→ Ω0
cγÞπ−. The result of an unbinned maxi-

mum-likelihood fit is overlaid to the data in Fig. 1 (right).
All decays are modeled in the same way as for the
Ω−

b → Ξþ
c K−π− channel. The combinatorial background

shape is fixed according to the projection of the Ω0
c

sidebands in the Ω0
c π− mass spectrum, where the Ω0

c
sidebands are defined as the 2650 MeV–2670 MeV
and 2720 MeV–2740 MeV ranges in the p K− K− πþ

invariant mass distribution. The yield of reconstructed Ω−
b

candidates is NΩ0
cπ− ¼ 174" 14, and the mass resolution

is 18.4" 1.5 MeV.

TABLE I. Results on the Ω−
b mass, relative branching fraction of the Ξþ

c K−π− decay mode, measured mass differences (ΔM), masses
(m), natural widths (Γ) and production fraction (P) of Ω&&0

c baryons where the first uncertainty is statistical and the second systematic.
The third asymmetric uncertainty on the Ω−

b and Ω&&0
c masses is due to the uncertainty in the Ξþ

c mass. Upper limits are given for the
width of the Ωcð3050Þ0 state and the production rate of the Ωcð3120Þ0 baryon, which are measured to be consistent with zero. The
results of the spin analysis are also listed (J rejection).

State Observable Measurement

Ω−
b m 6044.3" 1.2" 1.1þ0.19

−0.22 MeV
R 1.35" 0.11" 0.05

Threshold structure Significance 4.3σ

Ωcð3000Þ0 Significance 6.2σ
ΔM 37.6" 0.9" 0.9 MeV
m 2999.2" 0.9" 0.9þ0.19

−0.22 MeV
Γ 4.8" 2.1" 2.5 MeV
P 0.11" 0.02" 0.04

J rejection 0.5σðJ ¼ 1=2Þ; 0.8σðJ ¼ 3=2Þ; 0.4σðJ ¼ 5=2Þ
Ωcð3050Þ0 Significance 9.9σ

ΔM 88.5" 0.3" 0.2 MeV
m 3050.1" 0.3" 0.2þ0.19

−0.22 MeV
Γ < 1.6 MeV, 95% CL
P 0.15" 0.02" 0.02

J rejection 2.2σðJ ¼ 1=2Þ; 0.1σðJ ¼ 3=2Þ; 1.2σðJ ¼ 5=2Þ
Ωcð3065Þ0 Significance 11.9σ

ΔM 104.3" 0.4" 0.4 MeV
m 3065.9" 0.4" 0.4þ0.19

−0.22 MeV
Γ 1.7" 1.0" 0.5 MeV
P 0.23" 0.02" 0.02

J rejection 3.6σðJ ¼ 1=2Þ; 0.6σðJ ¼ 3=2Þ; 1.2σðJ ¼ 5=2Þ
Ωcð3090Þ0 Significance 7.8σ

ΔM 129.4" 1.1" 1.0 MeV
m 3091.0" 1.1" 1.0þ0.19

−0.22 MeV
Γ 7.4" 3.1" 2.8 MeV
P 0.19" 0.02" 0.04

J rejection 0.3σðJ ¼ 1=2Þ; 0.8σðJ ¼ 3=2Þ; 0.5σðJ ¼ 5=2Þ
Ωcð3120Þ0 P < 0.03, 95% CL
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Observation of excited Ω0
c baryons in Ω−

b → Ξ+
c K −π − decays

R. Aaij et al.*

(LHCb Collaboration)

(Received 8 July 2021; accepted 14 September 2021; published 24 November 2021)

The first observation of the Ω−
b → Ξþ

c K−π− decay is reported using p p collision data at center of mass
energies of 7, 8, and 13 TeV collected by the LHCb experiment, corresponding to an integrated luminosity
of 9 fb−1. Four excited Ω0

c baryons are observed in the Ξþ
c K− mass projection of the Ω−

b → Ξþ
c K−π−

decays with the significance of each exceeding five standard deviations. They coincide with the states
previously observed in prompt pp and eþe− production. Relative production rates, masses, and natural
widths of the states are measured, and a test of spin hypotheses is performed. Moreover, the branching ratio
of Ω−

b → Ξþ
c K−π− is measured relative to the Ω−

b → Ω0
cπ− decay mode and a precise measurement of the

Ω−
b mass of 6044.3" 1.2" 1.1þ0.19

−0.22 MeV is obtained.

DOI: 10.1103/PhysRevD.104.L091102

I. INTRODUCTION

The spectrum of the baryons with a single heavy quark
Qqq0 (Q ¼ b or c and q; q0 ¼ u, d, or s) is well classified
using the heavy quark-diquark degrees of freedom. Heavy-
quark effective theory [1–8] provides the basis for factoring
out the heavy-quark dynamics up to corrections of the first
order of 1=mQ, where mQ is the heavy-quark mass.
Therefore, the observation of new baryons and measure-
ments of their properties provide information about the role
played by diquarks in baryons, and can also help to tune
tetraquark and pentaquark models.
In recent years, the LHCb experiment hasmade numerous

contributions to the spectroscopy of heavy baryons by
observing several new states [9–16]. Among them, the
spectrum of excitedΩ0

c baryons has drawn special attention.
Five new excited narrowΩ0

c states, herein denotedΩ$$0
c , and

promptly produced in proton-proton (pp) collisions, have
been observed in the Ξþ

c K− mass spectrum [16,17].
Many theoretical approaches including potential models,

QCD sum rules, and lattice QCD predict the Ω$$0
c spectrum

and interpret the newly discovered states as orbitally or
radially excited Ω0

c states [18–36], while a few studies
suggest that some of them may be either molecular states or
pentaquarks [37–43]. Most of the predictions propose the
mass ordering of the states, while widths and relative
production rates remain unexploited on the theoretical side.
Seven excited P-wave Ω0

c baryons are expected: five

λ-mode excited states where the constituent c quark and
the ss diquark are in a P-wave, and two ρ-mode excited
states where the two s quarks are in a P-wave. One of the
most popular interpretations is that the observedΩ$$0

c states
correspond to the five λ-mode excited Ω0

c baryons with
quantum numbers JP ¼ 1=2−; 1=2−; 3=2−; 3=2−, and
5=2−. The determination of the spin-parity quantum num-
bers of the Ω$$0

c states would help to discriminate between
the proposed models and to probe the internal structure of
the baryons.
This paper presents the first observation of the Ω$$0

c
states produced in exclusive Ω−

b decays. These are studied
in the previously unobserved Ω−

b → Ξþ
c K−π− decays

[44,45], where the Ξþ
c baryons are reconstructed in the

pK−πþ final state. The mass of the Ω−
b baryon has been

measured in decays to the Ω0
cπ− and Ω−Jψ final states. The

new decay mode Ω−
b → Ξþ

c K−π− is a prominent reaction to
measure also the Ω−

b mass due to a multiparticle final state
and smaller phase space with respect to the Ω0

cπ− mode.1

The analysis is based on samples of pp collision data at
center of mass energies of

ffiffiffi
s

p
¼ 7, 8 and 13 TeV, corre-

sponding to an integrated luminosity of 9 fb−1.

II. DETECTOR AND SIMULATION

The LHCb detector [46,47] is a single-arm forward
spectrometer covering the pseudorapidity range 2 < η < 5,
designed for the study of particles containing b or c quarks.
The detector includes a high-precision tracking system
consisting of a silicon-strip vertex detector surrounding the
pp interaction region, a large-area silicon-strip detector

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1Unless otherwise stated, charge-conjugate processes are
implicitly included, and natural units with ℏ ¼ c ¼ 1 are used
throughout.
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Molecular Ωc states generated from coupled meson-baryon channels

V. R. Debastiani,1,* J. M. Dias,1,2,† W. H. Liang,3,‡ and E. Oset1,§
1Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia—CSIC,

Institutos de Investigación de Paterna, Aptdo. 22085, 46071 Valencia, Spain
2Instituto de Física, Universidade de São Paulo,

Rua do Matão, 1371, Butantã, São Paulo, São Paulo CEP 05508-090, Brazil
3Department of Physics, Guangxi Normal University, Guilin 541004, China

(Received 13 February 2018; published 31 May 2018)

We have investigated Ωc states that are dynamically generated from the meson-baryon interaction. We
use an extension of the local hidden gauge to obtain the interaction from the exchange of vector mesons.
We show that the dominant terms come from the exchange of light vectors, where the heavy quarks are
spectators. This has as a consequence that heavy quark symmetry is preserved for the dominant terms in
the (1=mQ) counting, and also that the interaction in this case can be obtained from the SU(3) chiral
Lagrangians. We show that for a standard value for the cutoff regulating the loop, we obtain two states with
JP ¼ 1=2− and two more with JP ¼ 3=2−, three of them in remarkable agreement with three experimental
states in mass and width. We also make predictions at higher energies for states of vector-baryon nature.

DOI: 10.1103/PhysRevD.97.094035

I. INTRODUCTION

In Ref. [1] the LHCb collaboration reported five new
narrow Ω0

c states studying the Ξþ
c K− mass spectrum

produced in high energy pp collisions: Ωcð3000Þ,
Ωcð3050Þ, Ωcð3066Þ, Ωcð3090Þ, and Ωcð3119Þ.
Predictions for such states and related ones had been done
within quark model in Refs. [2–14]. Molecular states had
also been used to make predictions in Refs. [15,16] studying
the interaction of coupled channels, one of them being the
Ξþ
c K− where the recent LHCb states were found. A more

updated study along these lines was done in Ref. [17], where
predictions for charmed and strange baryons are done using
an interaction based on SU(6) flavor-spin symmetry in the
light quark sector and SU(2) spin symmetry in the heavy
quark sector, extending the SU(3) Weinberg-Tomozawa
interaction. All these works take the coupled channels of
meson baryon that couple to the desired baryon quantum
numbers and use a unitary scheme to obtain the scattering
matrix between the channels, looking for poles of this
matrix. The differences come from the input interaction
and the way that loops are regularized.

The experimental findings of Ref. [1] have brought a
new wave of theoretical activity with many suggestions to
explain the new states. Different versions of quark models
have been proposed in Refs. [18–21]. Pentaquark options
have been suggested in Refs. [22–27]. QCD sum rules were
used to describe these states in Refs. [28–35]. Lattice QCD
has also shed some light onto the problem [36]. Some
works have emphasized the value of decay properties to
obtain information on the nature of these states [37–39] and
a discussion on the possible quantum numbers was done
in Ref. [40].
In the molecular picture, an update of the work of

Ref. [16] was done in Ref. [41] using some information
from the experimental spectrum to regularize the loops and
then giving a description of the mass and width of two
states of Ref. [1] as JP ¼ 1=2− meson-baryon molecular
states.
In the present work we follow Refs. [17,41] for the

coupled channels and the unitarization procedure. We differ
in the input for the interaction, which in our case is based
on the local hidden gauge approach, exchanging vector
mesons [42–46].
We must clarify this concept. The local hidden gauge

approach [42–45] works with pseudoscalar and vector
mesons in the light sector and chiral symmetry is one of
its assets, showing up in the limit of small mass of the
pseudoscalar mesons (Goldstone bosons). In Refs. [42–47],
and particularly in Refs. [45,47], one can see that the terms
of the chiral Lagrangians can be obtained from the
exchange of vector mesons in the local hidden gauge.
Reference [47] also shows that the consideration of vector

*vinicius.rodrigues@ific.uv.es
†jdias@if.usp.br
‡liangwh@gxnu.edu.cn
§eulogio.oset@ific.uv.es
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the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.
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only show the results with the pseudoscalar-baryon inter-
action. This sector decouples from the vector-baryon one,
where the states obtained degenerate in JP ¼ 1=2−, 3=2−.
We come back to this sector later on.
We can see that we always get two states in the range of

the masses observed experimentally. The strategy followed
in these calculations is to fine-tune the cutoff to adjust
the pole position to some experimental data. We see that if
we take qmax ¼ 650 MeV the results agree well with the
second and fourth resonances reported in Ref. [1],
Ωcð3050Þ and Ωcð3090Þ. It is interesting to note that cutoff
values of this order are used in Ref. [70] for K̄N or in
Ref. [71] for DN. Fitting one resonance is partly a merit of
fine-tuning the cutoff, but then the second resonance and
the widths are genuine predictions of the theory. Note that
the widths are respectively 0.88 and 10.24 MeV, which
agree remarkably well with the experiment, 0.8$ 0.2$ 0.1
and 8.7$ 1.0$ 0.8 MeV, respectively. It is instructive to
see the origin of the widths. For this we look at Table VI for
the couplings to the different channels. We can see that
for the lower state at 3054 MeV only the ΞcK̄ channel is
open for decay, precisely the channel where it has been
observed, and the coupling of the state to this channel is
very small. However, for the state at 3091 MeV the Ξ0

cK̄
channel is also open, and the coupling to this channel is
considerable. Furthermore, the coupling to ΞcK̄ is bigger
than before and there is more phase space for decay.
Next we look for the states of JP ¼ 3=2− from the

pseudoscalar-baryonð3=2þÞ interaction. In Table IV we see
that the pseudoscalar-baryonð3=2þÞ states do not couple to
the vector-baryon channels and we can separate two blocks,
the channels Ξ&

cK̄, Ω&
cη, Ξ&D and ΞD&, ΞcK̄&, Ξ0

cK̄&. The
first three channels in s-wave give rise to JP ¼ 3=2−, while
the other three give rise to JP ¼ 1=2−, 3=2−, degenerated in
our approach. We then separate these two sets of states.
InTableVIIweshowthe results forJP ¼ 3=2− fordifferent

values of the cutoff. We see that we get two poles. Yet, if we

choose the same cutoff as in the JP ¼ 1=2− sector we find a
mass of 3125MeVand zerowidth for the lowest state. As we
can see, the mass is smaller than all the thresholds in Table II;
hence it does not decay into them.To decay intoΞcK̄, where it
has been observed, we would need the exchange of vector
mesons in p-wave, which give rise to a small width. We can
clearly associate the state found with theΩcð3119Þ observed
experimentally, which has a width of 1.1$ 0.8$ 0.4 MeV.
The agreement is also remarkable.
In Table VIII we show the couplings of the states to the

coupled channels of Table II. We can see that the state at
3125 MeV couples strongly to Ξ&

cK̄ andΩ&
cη, more strongly

to Ξ&
cK̄. The higher state, at 3290 MeV, couples very

strongly to Ξ&D.
For the vector-baryon states with JP ¼ 1=2−, 3=2− we

choose the samecutoffqmax ¼ 650 MeV thatwehave chosen
in the former cases and find three states that we show in
Table IX together with the couplings to each channel.
The first state obtained has zero width and couples

mostly to ΞD& while the second and third ones have very
small widths and couple mostly to ΞcK̄& and Ξ0

cK̄&,
respectively. The widths could be bigger if we had
considered vector-baryon transitions to a pseudoscalar-
baryon channel but we argued that they were small in
any case and neglected them in our study.
It is interesting to compare our results with those of

Ref. [41]. The main feature is that the results obtained are
remarkably similar. In Ref. [41] two states of JP ¼ 1=2−

are also found that compare well with the Ωcð3050Þ and
Ωcð3090Þ, as we have found here. The width of the second
state is about 17 MeV, while we get 10 MeV closer to the
experimental value. In Ref. [41] two sets of subtraction
constants (cutoffs) are used and in one of them the width of
this state is 12 MeV, at the expense of using a somewhat
small cutoff in the ΞcK̄ decay channel of 320 MeV. Even
then, the main channels and the strengths of the couplings
are similar to ours.

TABLE VI. The coupling constants to various channels for the poles in the JP ¼ 1=2− sector, with qmax ¼ 650 MeV, and giGII
i in

MeV.

3054.05þ i0.44 ΞcK̄ Ξ0
cK̄ ΞD Ωcη ΞD& ΞcK̄& Ξ0

cK̄&

gi −0.06þ i0.14 1.94þ i0.01 −2.14þ i0.26 1.98þ i0.01 0 0 0
giGII

i −1.40 − i3.85 −34.41 − i0.30 9.33 − i1.10 −16.81 − i0.11 0 0 0

3091.28þ i5.12 ΞcK̄ Ξ0
cK̄ ΞD Ωcη ΞD& ΞcK̄& Ξ0

cK̄&

gi 0.18 − i0.37 0.31þ i0.25 5.83 − i0.20 0.38þ i0.23 0 0 0
giGII

i 5.05þ i10.19 −9.97 − i3.67 −29.82þ i0.31 −3.59 − i2.23 0 0 0

TABLE VII. Poles in the JP ¼ 3=2− sector from pseudoscalar-baryonð3=2þÞ interaction (units, MeV).

qmax 600 650 700 750 800

3134.39 3124.84 3112.83 3099.2 3084.52
3316.48þ i0.14 3290.31þ i0.03 3260.42þ i0.08 3227.34þ i0.15 3191.13þ i0.22

MOLECULAR Ωc STATES GENERATED FROM … PHYS. REV. D 97, 094035 (2018)

094035-7

Ω% 3050

Ω% 3090

Five narrow excited Ω% states from LHCb: 
Ω% 3000 , Ω% 3050 , Ω% 3066 , Ω% 3090 , Ω% 3119 	



7Motivation for Ω𝒄𝒄, Ω𝒃𝒃 and Ω𝒃𝒄

1) The discovery of new states with heavy quarks and the search for 

doubly heavy baryons on experimental side  

2) The molecular Ω𝒄 states 

Ω% Ω%%, Ω&&, Ω&%
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M M ′

B B′

V

5

|Ξ(∗)
c D(∗), I = 0⟩ = −

1√
2
(|Ξ(∗)+

c D(∗)0⟩+ |Ξ(∗)0
c D(∗)+⟩)

|Ξ
′

cD
(∗), I = 0⟩ = −

1√
2
(|Ξ

′+
c D(∗)0⟩+ |Ξ

′0
c D(∗)+⟩)

|Ξ(∗)
bb K̄(∗), I = 0⟩ = −

1√
2
(|Ξ(∗)0

bb K(∗)−⟩+ |Ξ(∗)−
bb K̄(∗)0⟩)

|Ω(∗)
bb η, I = 0⟩ = |Ω(∗)−

bb η⟩

|Ω(∗)
bb ω, I = 0⟩ = |Ω(∗)−

bb ω⟩

|Ξ(∗)
b B̄(∗), I = 0⟩ = −

1√
2
(|Ξ(∗)0

b B(∗)−⟩+ |Ξ(∗)−
b B̄(∗)0⟩)

|Ξ
′

bB̄
(∗), I = 0⟩ = −

1√
2
(|Ξ

′0
b B(∗)−⟩+ |Ξ

′−
b B̄(∗)0⟩)

|Ξ(∗)
bc K̄(∗), I = 0⟩ = −

1√
2
(|Ξ(∗)+

bc K(∗)−⟩+ |Ξ(∗)0
bc K̄(∗)0⟩)

|Ξ
′

bcK̄
(∗), I = 0⟩ = −

1√
2
(|Ξ

′+
bc K

(∗)−⟩+ |Ξ
′0
bcK̄

(∗)0⟩)

|Ω(∗)
bc η, I = 0⟩ = |Ω(∗)0

bc η⟩

|Ω
′

bcη, I = 0⟩ = |Ω
′0
bcη⟩

|Ω(∗)
bc ω, I = 0⟩ = |Ω(∗)0

bc ω⟩

|Ω
′

bcω, I = 0⟩ = |Ω
′0
bcω⟩

|Ξ(∗)
b D(∗), I = 0⟩ = −

1√
2
(|Ξ(∗)0

b D(∗)0⟩+ |Ξ(∗)−
b D(∗)+⟩)

|Ξ
′

bD
(∗), I = 0⟩ = −

1√
2
(|Ξ

′0
b D(∗)0⟩+ |Ξ

′−
b D(∗)+⟩)

|Ξ(∗)
c B̄(∗), I = 0⟩ = −

1√
2
(|Ξ(∗)+

c B(∗)−⟩+ |Ξ(∗)0
c B̄(∗)0⟩)

|Ξ
′

cB̄
(∗), I = 0⟩ = −

1√
2
(|Ξ

′+
c B(∗)−⟩+ |Ξ

′0
c B̄(∗)0⟩).

C. Interaction between coupled channels

M M ′

B B′

V

FIG. 1: Diagrammatic representation of the interaction MB → M ′B′ through the exchange of vector mesons. The M(M ′) and B(B′) are
the initial (final) meson and baryon states, respectively, while V stands for the vector meson exchanged.

As mentioned above, we use vector exchange from the extension of the local hidden gauge approach between mesons and
baryons as shown in the Fig. 1. The VMM ′ vertex has two types for our set of states, V PP (V ≡ vector, P ≡ pseudoscalar)
and V V V , which are described by the following Lagrangians

LVPP = −ig ⟨[P, ∂µP ]V µ⟩ , (3)

LVVV = ig ⟨(V µ∂νVµ − ∂νV
µVµ)V

ν⟩ . (4)

The coupling g = mV

2fπ
with mV = 800 MeV and the pion decay constant fπ = 93 MeV. And the P or V above are the qiq̄j

matrices written in terms of mesons and the symbol ⟨· · ·⟩ means the trace for the matrices. We must recall that, while qiq̄j are

6

SU(4) or SU(5) matrices, the vertices of Eqs. (3) and (4) only use the overlap of qq̄ in the external mesons and the exchanged
vectors, hence the use of the SU(4), SU(5) symmetry is superfluous [105].

The matrices P and V that we need are given by

P =

⎛

⎜⎜⎜⎜⎝

1√
2
π0 + 1√

3
η + 1√

6
η′ π+ K+ D̄0

π− − 1√
2
π0 + 1√

3
η + 1√

6
η′ K0 D−

K− K̄0 − 1√
3
η +

√
2
3η

′ D−
s

D0 D+ D+
s ηc

⎞

⎟⎟⎟⎟⎠
, (5)

V =

⎛

⎜⎜⎜⎝

1√
2
ρ0 + 1√

2
ω ρ+ K∗+ D̄∗0

ρ− − 1√
2
ρ0 + 1√

2
ω K∗0 D̄∗−

K∗− K̄∗0 φ D∗−
s

D∗0 D∗+ D∗+
s J/ψ

⎞

⎟⎟⎟⎠
, (6)

for the mesons in the charm sector, and

P =

⎛

⎜⎜⎜⎜⎝

1√
2
π0 + 1√

3
η + 1√

6
η′ π+ K+ B+

π− − 1√
2
π0 + 1√

3
η + 1√

6
η′ K0 B0

K− K̄0 − 1√
3
η +

√
2
3η

′ B0
s

B− B̄0 B̄0
s ηb

⎞

⎟⎟⎟⎟⎠
, (7)

V =

⎛

⎜⎜⎜⎝

1√
2
ρ0 + 1√

2
ω ρ+ K∗+ B∗+

ρ− − 1√
2
ρ0 + 1√

2
ω K∗0 B∗0

K∗− K̄∗0 φ B∗0
s

B∗− B̄∗0 B̄∗0
s Υ

⎞

⎟⎟⎟⎠
, (8)

for the bottom sector.
We also note that we evaluate the V V V interaction assuming that the external three momenta are small versus the vector mass

and then can be neglected. In this case the vertex V ν in Eq. (4) cannot be the external vector since ϵ0 = 0 for the vector at
rest, the ν are spatial components and ∂ν will give three vectors which are null. Then V ν corresponds to the exchanged vector.
Eq. (4) is then equivalent to Eq. (3) substituting the P of a given qq̄ by the corresponding V and adding the −ϵµϵ′µ = ϵ⃗ · ϵ⃗ ′ factor
for the polarization of the two external vectors.

The lower vertex of Fig. 1 is rendered easy to evaluate using the wave functions of Table IV. Rather than using effec-
tive Lagrangians in terms of the mesons and baryons which require extension of chiral Lagrangians from SU(3) to SU(4)
or SU(5) [69, 70, 75], we write the operator in terms of quarks and sandwich it with the baryon wave functions of Table IV [76].
The vertex is given by

L̃VBB ≡ gqq̄(V ), (9)

where qq̄ is the vector wave function in terms of quarks, hence

L̃V BB ≡ g

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1√
2
(uū− dd̄), ρ0

1√
2
(uū+ dd̄), ω

ss̄, φ

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (10)

in the neutral light vector exchange. It is worth mentioning that the exchange of light vector mesons obtained using SU(4)
symmetry in [69, 70, 75] coincides with the formalism of [76] since the heavy quarks are spectators and only the light quarks
play a role, hence one is not making use of SU(4) symmetry, but only of its SU(3) subgroup. Since the exchange of light vector
mesons provide the dominant contribution, it is not surprising to see that the results of [75] and [76] are very similar. The other
point worth mentioning is that for these dominant terms, since the heavy quarks are spectators, the interaction does not depend
upon them and then the heavy quark symmetries [106] are automatically fulfilled.
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(|Ξ

′0
b B(∗)−⟩+ |Ξ

′−
b B̄(∗)0⟩)

|Ξ(∗)
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(|Ξ

′+
bc K

(∗)−⟩+ |Ξ
′0
bcK̄

(∗)0⟩)

|Ω(∗)
bc η, I = 0⟩ = |Ω(∗)0

bc η⟩
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′

bcη, I = 0⟩ = |Ω
′0
bcη⟩

|Ω(∗)
bc ω, I = 0⟩ = |Ω(∗)0

bc ω⟩
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′

bcω, I = 0⟩ = |Ω
′0
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|Ξ(∗)
b D(∗), I = 0⟩ = −

1√
2
(|Ξ(∗)0

b D(∗)0⟩+ |Ξ(∗)−
b D(∗)+⟩)

|Ξ
′

bD
(∗), I = 0⟩ = −

1√
2
(|Ξ

′0
b D(∗)0⟩+ |Ξ

′−
b D(∗)+⟩)

|Ξ(∗)
c B̄(∗), I = 0⟩ = −

1√
2
(|Ξ(∗)+

c B(∗)−⟩+ |Ξ(∗)0
c B̄(∗)0⟩)

|Ξ
′

cB̄
(∗), I = 0⟩ = −

1√
2
(|Ξ

′+
c B(∗)−⟩+ |Ξ

′0
c B̄(∗)0⟩).

C. Interaction between coupled channels

M M ′

B B′

V

FIG. 1: Diagrammatic representation of the interaction MB → M ′B′ through the exchange of vector mesons. The M(M ′) and B(B′) are
the initial (final) meson and baryon states, respectively, while V stands for the vector meson exchanged.

As mentioned above, we use vector exchange from the extension of the local hidden gauge approach between mesons and
baryons as shown in the Fig. 1. The VMM ′ vertex has two types for our set of states, V PP (V ≡ vector, P ≡ pseudoscalar)
and V V V , which are described by the following Lagrangians

LVPP = −ig ⟨[P, ∂µP ]V µ⟩ , (3)

LVVV = ig ⟨(V µ∂νVµ − ∂νV
µVµ)V

ν⟩ . (4)

The coupling g = mV

2fπ
with mV = 800 MeV and the pion decay constant fπ = 93 MeV. And the P or V above are the qiq̄j

matrices written in terms of mesons and the symbol ⟨· · ·⟩ means the trace for the matrices. We must recall that, while qiq̄j are

Vector exchange from the extension to the heavy quark sector of 
the local hidden gauge approach

only show the results with the pseudoscalar-baryon inter-
action. This sector decouples from the vector-baryon one,
where the states obtained degenerate in JP ¼ 1=2−, 3=2−.
We come back to this sector later on.
We can see that we always get two states in the range of

the masses observed experimentally. The strategy followed
in these calculations is to fine-tune the cutoff to adjust
the pole position to some experimental data. We see that if
we take qmax ¼ 650 MeV the results agree well with the
second and fourth resonances reported in Ref. [1],
Ωcð3050Þ and Ωcð3090Þ. It is interesting to note that cutoff
values of this order are used in Ref. [70] for K̄N or in
Ref. [71] for DN. Fitting one resonance is partly a merit of
fine-tuning the cutoff, but then the second resonance and
the widths are genuine predictions of the theory. Note that
the widths are respectively 0.88 and 10.24 MeV, which
agree remarkably well with the experiment, 0.8$ 0.2$ 0.1
and 8.7$ 1.0$ 0.8 MeV, respectively. It is instructive to
see the origin of the widths. For this we look at Table VI for
the couplings to the different channels. We can see that
for the lower state at 3054 MeV only the ΞcK̄ channel is
open for decay, precisely the channel where it has been
observed, and the coupling of the state to this channel is
very small. However, for the state at 3091 MeV the Ξ0

cK̄
channel is also open, and the coupling to this channel is
considerable. Furthermore, the coupling to ΞcK̄ is bigger
than before and there is more phase space for decay.
Next we look for the states of JP ¼ 3=2− from the

pseudoscalar-baryonð3=2þÞ interaction. In Table IV we see
that the pseudoscalar-baryonð3=2þÞ states do not couple to
the vector-baryon channels and we can separate two blocks,
the channels Ξ&

cK̄, Ω&
cη, Ξ&D and ΞD&, ΞcK̄&, Ξ0

cK̄&. The
first three channels in s-wave give rise to JP ¼ 3=2−, while
the other three give rise to JP ¼ 1=2−, 3=2−, degenerated in
our approach. We then separate these two sets of states.
InTableVIIweshowthe results forJP ¼ 3=2− fordifferent

values of the cutoff. We see that we get two poles. Yet, if we

choose the same cutoff as in the JP ¼ 1=2− sector we find a
mass of 3125MeVand zerowidth for the lowest state. As we
can see, the mass is smaller than all the thresholds in Table II;
hence it does not decay into them.To decay intoΞcK̄, where it
has been observed, we would need the exchange of vector
mesons in p-wave, which give rise to a small width. We can
clearly associate the state found with theΩcð3119Þ observed
experimentally, which has a width of 1.1$ 0.8$ 0.4 MeV.
The agreement is also remarkable.
In Table VIII we show the couplings of the states to the

coupled channels of Table II. We can see that the state at
3125 MeV couples strongly to Ξ&

cK̄ andΩ&
cη, more strongly

to Ξ&
cK̄. The higher state, at 3290 MeV, couples very

strongly to Ξ&D.
For the vector-baryon states with JP ¼ 1=2−, 3=2− we

choose the samecutoffqmax ¼ 650 MeV thatwehave chosen
in the former cases and find three states that we show in
Table IX together with the couplings to each channel.
The first state obtained has zero width and couples

mostly to ΞD& while the second and third ones have very
small widths and couple mostly to ΞcK̄& and Ξ0

cK̄&,
respectively. The widths could be bigger if we had
considered vector-baryon transitions to a pseudoscalar-
baryon channel but we argued that they were small in
any case and neglected them in our study.
It is interesting to compare our results with those of

Ref. [41]. The main feature is that the results obtained are
remarkably similar. In Ref. [41] two states of JP ¼ 1=2−

are also found that compare well with the Ωcð3050Þ and
Ωcð3090Þ, as we have found here. The width of the second
state is about 17 MeV, while we get 10 MeV closer to the
experimental value. In Ref. [41] two sets of subtraction
constants (cutoffs) are used and in one of them the width of
this state is 12 MeV, at the expense of using a somewhat
small cutoff in the ΞcK̄ decay channel of 320 MeV. Even
then, the main channels and the strengths of the couplings
are similar to ours.

TABLE VI. The coupling constants to various channels for the poles in the JP ¼ 1=2− sector, with qmax ¼ 650 MeV, and giGII
i in

MeV.

3054.05þ i0.44 ΞcK̄ Ξ0
cK̄ ΞD Ωcη ΞD& ΞcK̄& Ξ0

cK̄&

gi −0.06þ i0.14 1.94þ i0.01 −2.14þ i0.26 1.98þ i0.01 0 0 0
giGII

i −1.40 − i3.85 −34.41 − i0.30 9.33 − i1.10 −16.81 − i0.11 0 0 0

3091.28þ i5.12 ΞcK̄ Ξ0
cK̄ ΞD Ωcη ΞD& ΞcK̄& Ξ0

cK̄&

gi 0.18 − i0.37 0.31þ i0.25 5.83 − i0.20 0.38þ i0.23 0 0 0
giGII

i 5.05þ i10.19 −9.97 − i3.67 −29.82þ i0.31 −3.59 − i2.23 0 0 0

TABLE VII. Poles in the JP ¼ 3=2− sector from pseudoscalar-baryonð3=2þÞ interaction (units, MeV).

qmax 600 650 700 750 800

3134.39 3124.84 3112.83 3099.2 3084.52
3316.48þ i0.14 3290.31þ i0.03 3260.42þ i0.08 3227.34þ i0.15 3191.13þ i0.22

MOLECULAR Ωc STATES GENERATED FROM … PHYS. REV. D 97, 094035 (2018)

094035-7
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FIG. 1: Diagrammatic representation of the interaction MB → M ′B′ through the exchange of vector mesons. The M(M ′) and B(B′) are
the initial (final) meson and baryon states, respectively, while V stands for the vector meson exchanged.

As mentioned above, we use vector exchange from the extension of the local hidden gauge approach between mesons and
baryons as shown in the Fig. 1. The VMM ′ vertex has two types for our set of states, V PP (V ≡ vector, P ≡ pseudoscalar)
and V V V , which are described by the following Lagrangians

LVPP = −ig ⟨[P, ∂µP ]V µ⟩ , (3)

LVVV = ig ⟨(V µ∂νVµ − ∂νV
µVµ)V

ν⟩ . (4)

The coupling g = mV

2fπ
with mV = 800 MeV and the pion decay constant fπ = 93 MeV. And the P or V above are the qiq̄j

matrices written in terms of mesons and the symbol ⟨· · ·⟩ means the trace for the matrices. We must recall that, while qiq̄j are

6

SU(4) or SU(5) matrices, the vertices of Eqs. (3) and (4) only use the overlap of qq̄ in the external mesons and the exchanged
vectors, hence the use of the SU(4), SU(5) symmetry is superfluous [105].

The matrices P and V that we need are given by

P =

⎛

⎜⎜⎜⎜⎝

1√
2
π0 + 1√

3
η + 1√

6
η′ π+ K+ D̄0

π− − 1√
2
π0 + 1√

3
η + 1√

6
η′ K0 D−

K− K̄0 − 1√
3
η +

√
2
3η

′ D−
s

D0 D+ D+
s ηc

⎞

⎟⎟⎟⎟⎠
, (5)

V =

⎛

⎜⎜⎜⎝

1√
2
ρ0 + 1√

2
ω ρ+ K∗+ D̄∗0

ρ− − 1√
2
ρ0 + 1√

2
ω K∗0 D̄∗−

K∗− K̄∗0 φ D∗−
s

D∗0 D∗+ D∗+
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⎞

⎟⎟⎟⎠
, (6)

for the mesons in the charm sector, and
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play a role, hence one is not making use of SU(4) symmetry, but only of its SU(3) subgroup. Since the exchange of light vector
mesons provide the dominant contribution, it is not surprising to see that the results of [75] and [76] are very similar. The other
point worth mentioning is that for these dominant terms, since the heavy quarks are spectators, the interaction does not depend
upon them and then the heavy quark symmetries [106] are automatically fulfilled.
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play a role, hence one is not making use of SU(4) symmetry, but only of its SU(3) subgroup. Since the exchange of light vector
mesons provide the dominant contribution, it is not surprising to see that the results of [75] and [76] are very similar. The other
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We also note that we evaluate the V V V interaction assuming that the external three momenta are small versus the vector mass

and then can be neglected. In this case the vertex V ν in Eq. (4) cannot be the external vector since ϵ0 = 0 for the vector at
rest, the ν are spatial components and ∂ν will give three vectors which are null. Then V ν corresponds to the exchanged vector.
Eq. (4) is then equivalent to Eq. (3) substituting the P of a given qq̄ by the corresponding V and adding the −ϵµϵ′µ = ϵ⃗ · ϵ⃗ ′ factor
for the polarization of the two external vectors.

The lower vertex of Fig. 1 is rendered easy to evaluate using the wave functions of Table IV. Rather than using effec-
tive Lagrangians in terms of the mesons and baryons which require extension of chiral Lagrangians from SU(3) to SU(4)
or SU(5) [69, 70, 75], we write the operator in terms of quarks and sandwich it with the baryon wave functions of Table IV [76].
The vertex is given by

L̃VBB ≡ gqq̄(V ), (9)

where qq̄ is the vector wave function in terms of quarks, hence
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in the neutral light vector exchange. It is worth mentioning that the exchange of light vector mesons obtained using SU(4)
symmetry in [69, 70, 75] coincides with the formalism of [76] since the heavy quarks are spectators and only the light quarks
play a role, hence one is not making use of SU(4) symmetry, but only of its SU(3) subgroup. Since the exchange of light vector
mesons provide the dominant contribution, it is not surprising to see that the results of [75] and [76] are very similar. The other
point worth mentioning is that for these dominant terms, since the heavy quarks are spectators, the interaction does not depend
upon them and then the heavy quark symmetries [106] are automatically fulfilled.
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TABLE IV: Wave functions of baryon states.

State I, J flavor spin

Ξ++
cc 1/2, 1/2 ccu χMS(12)

Ξ+
cc 1/2, 1/2 ccd χMS(12)

Ω+
cc 0, 1/2 ccs χMS(12)

Ξ+
c 1/2, 1/2 1√

2
c(us − su) χMA(23)

Ξ0
c 1/2, 1/2 1√

2
c(ds− sd) χMA(23)

Ξ
′+
c 1/2, 1/2 1√

2
c(us + su) χMS(23)

Ξ
′0
c 1/2, 1/2 1√

2
c(ds+ sd) χMS(23)

Ω0
c 0, 1/2 css χMS(23)

Ξ0
bb 1/2, 1/2 bbu χMS(12)

Ξ−
bb 1/2, 1/2 bbd χMS(12)

Ω−
bb 0, 1/2 bbs χMS(12)

Ξ0
b 1/2, 1/2 1√

2
b(us− su) χMA(23)

Ξ−
b 1/2, 1/2 1√

2
b(ds− sd) χMA(23)

Ξ
′0
b 1/2, 1/2 1√

2
b(us+ su) χMS(23)

Ξ
′−
b 1/2, 1/2 1√

2
b(ds+ sd) χMS(23)

Ω−
b 0, 1/2 bss χMS(23)

Ω0
bc 0, 1/2 1√

2
b(cs− sc) χMA(23)

Ω
′0
bc 0, 1/2 1√

2
b(cs+ sc) χMS(23)

Ξ+

bc 1/2, 1/2 1√
2
b(cu− uc) χMA(23)

Ξ
′+

bc 1/2, 1/2 1√
2
b(cu+ uc) χMS(23)

Ξ0
bc 1/2, 1/2 1√

2
b(cd− dc) χMA(23)

Ξ
′0
bc 1/2, 1/2 1√

2
b(cd+ dc) χMS(23)

Ξ∗++
cc 1/2, 3/2 ccu χS

Ξ∗+
cc 1/2, 3/2 ccd χS

Ω∗+
cc 0, 3/2 ccs χS

Ξ∗+
c 1/2, 3/2 1√

2
c(us + su) χS

Ξ∗0
c 1/2, 3/2 1√

2
c(ds+ sd) χS

Ω∗0
c 0, 3/2 css χS

Ξ∗0
bb 1/2, 3/2 bbu χS

Ξ∗−
bb 1/2, 3/2 bbd χS

Ω∗−
bb 0, 3/2 bbs χS

Ξ∗0
b 1/2, 3/2 1√

2
b(us+ su) χS

Ξ∗−
b 1/2, 3/2 1√

2
b(ds+ sd) χS

Ω∗−
b 0, 3/2 bss χS

Ξ∗+
bc 1/2, 3/2 1√

2
b(cu+ uc) χS

Ξ∗0
bc 1/2, 3/2 1√

2
b(cd+ dc) χS

Ω∗0
bc 0, 3/2 1√

2
b(cs+ sc) χS

We also must consider the isospin combinations of the states. For this we need to express our phase convention{
K̄0

−K−

}

,

{
D+

−D0

}

,

{
B̄0

−B−

}

,

{
Ξ+
c

Ξ0
c

}

,

{
Ξ0
b

Ξ−
b

}

,

{
Ξ++
cc

Ξ+
cc

}

,

{
Ξ0
bb

Ξ−
bb

}

,

{
Ξ+
bc

Ξ0
bc

}

, and then the isospin wave functions are given

by:

|Ξ(∗)
cc K̄(∗), I = 0⟩ = −

1√
2
(|Ξ(∗)++

cc K(∗)−⟩+ |Ξ(∗)+
cc K̄(∗)0⟩) (2)

|Ω(∗)
cc η, I = 0⟩ = |Ω(∗)+

cc η⟩
|Ω(∗)

cc ω, I = 0⟩ = |Ω(∗)+
cc ω⟩
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6

SU(4) or SU(5) matrices, the vertices of Eqs. (3) and (4) only use the overlap of qq̄ in the external mesons and the exchanged
vectors, hence the use of the SU(4), SU(5) symmetry is superfluous [105].

The matrices P and V that we need are given by

P =

⎛

⎜⎜⎜⎜⎝

1√
2
π0 + 1√

3
η + 1√

6
η′ π+ K+ D̄0

π− − 1√
2
π0 + 1√

3
η + 1√

6
η′ K0 D−

K− K̄0 − 1√
3
η +

√
2
3η

′ D−
s

D0 D+ D+
s ηc

⎞

⎟⎟⎟⎟⎠
, (5)

V =

⎛

⎜⎜⎜⎝

1√
2
ρ0 + 1√

2
ω ρ+ K∗+ D̄∗0

ρ− − 1√
2
ρ0 + 1√

2
ω K∗0 D̄∗−

K∗− K̄∗0 φ D∗−
s

D∗0 D∗+ D∗+
s J/ψ

⎞

⎟⎟⎟⎠
, (6)

for the mesons in the charm sector, and

P =

⎛

⎜⎜⎜⎜⎝

1√
2
π0 + 1√

3
η + 1√

6
η′ π+ K+ B+

π− − 1√
2
π0 + 1√

3
η + 1√

6
η′ K0 B0

K− K̄0 − 1√
3
η +

√
2
3η

′ B0
s

B− B̄0 B̄0
s ηb

⎞

⎟⎟⎟⎟⎠
, (7)

V =

⎛

⎜⎜⎜⎝

1√
2
ρ0 + 1√

2
ω ρ+ K∗+ B∗+

ρ− − 1√
2
ρ0 + 1√

2
ω K∗0 B∗0

K∗− K̄∗0 φ B∗0
s

B∗− B̄∗0 B̄∗0
s Υ

⎞

⎟⎟⎟⎠
, (8)

for the bottom sector.
We also note that we evaluate the V V V interaction assuming that the external three momenta are small versus the vector mass

and then can be neglected. In this case the vertex V ν in Eq. (4) cannot be the external vector since ϵ0 = 0 for the vector at
rest, the ν are spatial components and ∂ν will give three vectors which are null. Then V ν corresponds to the exchanged vector.
Eq. (4) is then equivalent to Eq. (3) substituting the P of a given qq̄ by the corresponding V and adding the −ϵµϵ′µ = ϵ⃗ · ϵ⃗ ′ factor
for the polarization of the two external vectors.

The lower vertex of Fig. 1 is rendered easy to evaluate using the wave functions of Table IV. Rather than using effec-
tive Lagrangians in terms of the mesons and baryons which require extension of chiral Lagrangians from SU(3) to SU(4)
or SU(5) [69, 70, 75], we write the operator in terms of quarks and sandwich it with the baryon wave functions of Table IV [76].
The vertex is given by

L̃VBB ≡ gqq̄(V ), (9)

where qq̄ is the vector wave function in terms of quarks, hence

L̃V BB ≡ g

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1√
2
(uū− dd̄), ρ0

1√
2
(uū+ dd̄), ω

ss̄, φ

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (10)

in the neutral light vector exchange. It is worth mentioning that the exchange of light vector mesons obtained using SU(4)
symmetry in [69, 70, 75] coincides with the formalism of [76] since the heavy quarks are spectators and only the light quarks
play a role, hence one is not making use of SU(4) symmetry, but only of its SU(3) subgroup. Since the exchange of light vector
mesons provide the dominant contribution, it is not surprising to see that the results of [75] and [76] are very similar. The other
point worth mentioning is that for these dominant terms, since the heavy quarks are spectators, the interaction does not depend
upon them and then the heavy quark symmetries [106] are automatically fulfilled.
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TABLE IV: Wave functions of baryon states.

State I, J flavor spin

Ξ++
cc 1/2, 1/2 ccu χMS(12)

Ξ+
cc 1/2, 1/2 ccd χMS(12)

Ω+
cc 0, 1/2 ccs χMS(12)

Ξ+
c 1/2, 1/2 1√

2
c(us − su) χMA(23)

Ξ0
c 1/2, 1/2 1√

2
c(ds− sd) χMA(23)

Ξ
′+
c 1/2, 1/2 1√

2
c(us + su) χMS(23)

Ξ
′0
c 1/2, 1/2 1√

2
c(ds+ sd) χMS(23)

Ω0
c 0, 1/2 css χMS(23)

Ξ0
bb 1/2, 1/2 bbu χMS(12)

Ξ−
bb 1/2, 1/2 bbd χMS(12)

Ω−
bb 0, 1/2 bbs χMS(12)

Ξ0
b 1/2, 1/2 1√

2
b(us− su) χMA(23)

Ξ−
b 1/2, 1/2 1√

2
b(ds− sd) χMA(23)

Ξ
′0
b 1/2, 1/2 1√

2
b(us+ su) χMS(23)

Ξ
′−
b 1/2, 1/2 1√

2
b(ds+ sd) χMS(23)

Ω−
b 0, 1/2 bss χMS(23)

Ω0
bc 0, 1/2 1√

2
b(cs− sc) χMA(23)

Ω
′0
bc 0, 1/2 1√

2
b(cs+ sc) χMS(23)

Ξ+

bc 1/2, 1/2 1√
2
b(cu− uc) χMA(23)

Ξ
′+

bc 1/2, 1/2 1√
2
b(cu+ uc) χMS(23)

Ξ0
bc 1/2, 1/2 1√

2
b(cd− dc) χMA(23)

Ξ
′0
bc 1/2, 1/2 1√

2
b(cd+ dc) χMS(23)

Ξ∗++
cc 1/2, 3/2 ccu χS

Ξ∗+
cc 1/2, 3/2 ccd χS

Ω∗+
cc 0, 3/2 ccs χS

Ξ∗+
c 1/2, 3/2 1√

2
c(us + su) χS

Ξ∗0
c 1/2, 3/2 1√

2
c(ds+ sd) χS

Ω∗0
c 0, 3/2 css χS

Ξ∗0
bb 1/2, 3/2 bbu χS

Ξ∗−
bb 1/2, 3/2 bbd χS

Ω∗−
bb 0, 3/2 bbs χS

Ξ∗0
b 1/2, 3/2 1√

2
b(us+ su) χS

Ξ∗−
b 1/2, 3/2 1√

2
b(ds+ sd) χS

Ω∗−
b 0, 3/2 bss χS

Ξ∗+
bc 1/2, 3/2 1√

2
b(cu+ uc) χS

Ξ∗0
bc 1/2, 3/2 1√

2
b(cd+ dc) χS

Ω∗0
bc 0, 3/2 1√

2
b(cs+ sc) χS

We also must consider the isospin combinations of the states. For this we need to express our phase convention{
K̄0

−K−

}

,

{
D+

−D0

}

,

{
B̄0

−B−

}

,

{
Ξ+
c

Ξ0
c

}

,

{
Ξ0
b

Ξ−
b

}

,

{
Ξ++
cc

Ξ+
cc

}

,

{
Ξ0
bb

Ξ−
bb

}

,

{
Ξ+
bc

Ξ0
bc

}

, and then the isospin wave functions are given

by:

|Ξ(∗)
cc K̄(∗), I = 0⟩ = −

1√
2
(|Ξ(∗)++

cc K(∗)−⟩+ |Ξ(∗)+
cc K̄(∗)0⟩) (2)

|Ω(∗)
cc η, I = 0⟩ = |Ω(∗)+

cc η⟩
|Ω(∗)

cc ω, I = 0⟩ = |Ω(∗)+
cc ω⟩

3

TABLE II: Threshold masses (in MeV) of different channels for Ωbb .

PB( 1
2

+
), JP = 1

2

− ΞbbK̄ Ωbbη ΞbB̄ Ξ′
bB̄

10833 10778 11076 11214

PB( 3
2

+
), JP = 3

2

− Ξ∗
bbK̄ Ω∗

bbη Ξ∗
b B̄

10863 10806 11231

V B( 1
2

+
), JP = 1

2

−
, 3

2

− ΞbbK̄
∗ Ωbbω ΞbB̄

∗ Ξ′
bB̄

∗

11230 11010 11122 11260

V B( 3
2

+
), JP = 1

2

−
, 3

2

−
, 5

2

− Ξ∗
bbK̄

∗ Ω∗
bbω Ξ∗

b B̄
∗

11260 11038 11277

TABLE III: Threshold masses (in MeV) of different channels for Ωbc.

PB( 1
2

+
), JP = 1

2

− ΞbcK̄ Ωbcη ΞbD ΞcB̄

7415 7559 7667 7747

PB( 1
2

+
), JP = 1

2

− Ξ′
bcK̄ Ω′

bcη Ξ′
bD Ξ′

cB̄

7441 7595 7805 7857

PB( 3
2

+
), JP = 3

2

− Ξ∗
bcK̄ Ω∗

bcη Ξ∗
bD Ξ∗

c B̄

7466 7614 7822 7925

V B( 1
2

+
), JP = 1

2

−
, 3

2

− ΞbcK̄
∗ Ωbcω ΞbD

∗ ΞcB̄∗

7812 7791 7807 7793

V B( 1
2

+
), JP = 1

2

−
, 3

2

− Ξ′
bcK̄

∗ Ω′
bcω Ξ′

bD
∗ Ξ′

cB̄
∗

7838 7827 7945 7903

V B( 3
2

+
), JP = 1

2

−
, 3

2

−
, 5

2

− Ξ∗
bcK̄

∗ Ω∗
bcω Ξ∗

bD
∗ Ξ∗

c B̄
∗

7863 7846 7962 7971

B. Baryon wave functions

The flavor of the pseudoscalar or vector mesons is trivial as they are qiq̄j states, with qi(j) = u, d, s, c, b quarks. The
baryon states require more care. We follow the procedure of Ref. [36] and single out the heaviest quark, then the symmetry
or antisymmetry is imposed on the two lighter quarks, and the spin wave function is then chosen accordingly to have the wave
function symmetric in spin-flavor for this couple of quarks, the color implementing the antisymmetry of the wave function. In
Table IV we show explicitly the wave functions of flavor and spin taken for all the baryon states needed in our work, and where
the spin wave functions within are defined, for the particular case Sz = +1/2, as:

χMS(12) =
1√
6
(↑↓↑ + ↓↑↑ −2 ↑↑↓) (1)

χMS(23) =
1√
6
(↑↓↑ + ↑↑↓ −2 ↓↑↑)

χMA(23) =
1√
2
(↑↑↓ − ↑↓↑).
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SU(4) or SU(5) matrices, the vertices of Eqs. (3) and (4) only use the overlap of qq̄ in the external mesons and the exchanged
vectors, hence the use of the SU(4), SU(5) symmetry is superfluous [105].

The matrices P and V that we need are given by

P =

⎛

⎜⎜⎜⎜⎝

1√
2
π0 + 1√

3
η + 1√

6
η′ π+ K+ D̄0

π− − 1√
2
π0 + 1√

3
η + 1√

6
η′ K0 D−

K− K̄0 − 1√
3
η +

√
2
3η

′ D−
s

D0 D+ D+
s ηc

⎞

⎟⎟⎟⎟⎠
, (5)

V =

⎛

⎜⎜⎜⎝

1√
2
ρ0 + 1√

2
ω ρ+ K∗+ D̄∗0

ρ− − 1√
2
ρ0 + 1√

2
ω K∗0 D̄∗−

K∗− K̄∗0 φ D∗−
s

D∗0 D∗+ D∗+
s J/ψ

⎞

⎟⎟⎟⎠
, (6)

for the mesons in the charm sector, and

P =

⎛

⎜⎜⎜⎜⎝

1√
2
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η′ π+ K+ B+

π− − 1√
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π0 + 1√

3
η + 1√

6
η′ K0 B0

K− K̄0 − 1√
3
η +

√
2
3η

′ B0
s

B− B̄0 B̄0
s ηb

⎞

⎟⎟⎟⎟⎠
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V =
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1√
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ρ0 + 1√

2
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K∗− K̄∗0 φ B∗0
s

B∗− B̄∗0 B̄∗0
s Υ

⎞

⎟⎟⎟⎠
, (8)

for the bottom sector.
We also note that we evaluate the V V V interaction assuming that the external three momenta are small versus the vector mass

and then can be neglected. In this case the vertex V ν in Eq. (4) cannot be the external vector since ϵ0 = 0 for the vector at
rest, the ν are spatial components and ∂ν will give three vectors which are null. Then V ν corresponds to the exchanged vector.
Eq. (4) is then equivalent to Eq. (3) substituting the P of a given qq̄ by the corresponding V and adding the −ϵµϵ′µ = ϵ⃗ · ϵ⃗ ′ factor
for the polarization of the two external vectors.
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An example of how the MB → M ′B′ potential is obtained combining the two vertices of Fig. 1 and the vector propagator is
shown in the Appendix of Ref. [76]. It is very easy and we refrain from repeating it here.

The evaluation of the transition potential Vij from one channel to another in the blocks we have selected is then straightfor-
ward, but we can simplify the calculation with the following observation [83]. Since the V BB vertex is spin independent we
classify the state in blocks that have χMS(23), χMA(23) and χS . Since χMS(12) have overlap with χMS(23) and χMA(23),
we must keep the states of χMS(12) in the blocks of χMS(23) and χMA(23). The overlap of these spin functions are given by

⟨χMS(12)|χMS(23)⟩ = −
1

2
, (11)

⟨χMS(12)|χMA(23)⟩ = −
√
3

2
. (12)

However, even if the Ξ′
cD and ΞcD states do not mix in the calculation of the potential, in the T matrix they will mix through

the intermediate ΞccK̄ and Ωccη states. Hence, we write the matrix Vij for all the states of PB. This said, we have the following
blocks.

D. Spin blocks for Ωcc state

i) PB(12
+
) channels: ΞccK̄ , Ωccη, ΞcD, and Ξ′

cD.

ii) PB(32
+
) channels: Ξ∗

ccK̄ , Ω∗
ccη, Ξ∗

cD

iii) V B(12
+
) channels: ΞccK̄∗, ΞcD∗, Ωccω, and Ξ′

cD
∗.

iv) V B(32
+
) channels: Ξ∗

ccK̄
∗, Ω∗

ccω, Ξ∗
cD

∗.

The interaction obtained for the mechanism of Fig. 1 is always of the type

Vij = −
1

4f2
π

(p01 + p03)Cij , (13)

where p01, p03 are the energies of the initial and final mesons, respectively. The coefficient Cij are then evaluated and we find the
following tables for the blocks described before. The λ below is a suppression factor of the order m2

V /m
2
D∗ coming from the

exchange of a D∗ rather than a light vector. Following Ref. [76] we take the value λ = 0.25 in the numerical calculations.

TABLE V: Coefficients Cij for the PB sector with JP = 1

2

−
.

ΞccK̄ Ωccη ΞcD Ξ′
cD

ΞccK̄ 2 2
√

2√
3

−
√
3

2
√

2
λ 1

2
√

2
λ

Ωccη 0 −
1

2
λ −1

2
√

3
λ

ΞcD 2 0

Ξ′
cD 2

TABLE VI: Coefficients Cij for the VB sector with JP = 1

2

−
, 3

2

−
.

ΞcD
∗ Ωccω ΞccK̄

∗ Ξ′
cD

∗

ΞcD
∗ 2 −

√
3

2
√

2
λ −

√
3

2
√

2
λ 0

Ωccω 0 1 −1

2
√

2
λ

ΞccK̄
∗ 2 1

2
√

2
λ

Ξ′
cD

∗ 2
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only show the results with the pseudoscalar-baryon inter-
action. This sector decouples from the vector-baryon one,
where the states obtained degenerate in JP ¼ 1=2−, 3=2−.
We come back to this sector later on.
We can see that we always get two states in the range of

the masses observed experimentally. The strategy followed
in these calculations is to fine-tune the cutoff to adjust
the pole position to some experimental data. We see that if
we take qmax ¼ 650 MeV the results agree well with the
second and fourth resonances reported in Ref. [1],
Ωcð3050Þ and Ωcð3090Þ. It is interesting to note that cutoff
values of this order are used in Ref. [70] for K̄N or in
Ref. [71] for DN. Fitting one resonance is partly a merit of
fine-tuning the cutoff, but then the second resonance and
the widths are genuine predictions of the theory. Note that
the widths are respectively 0.88 and 10.24 MeV, which
agree remarkably well with the experiment, 0.8$ 0.2$ 0.1
and 8.7$ 1.0$ 0.8 MeV, respectively. It is instructive to
see the origin of the widths. For this we look at Table VI for
the couplings to the different channels. We can see that
for the lower state at 3054 MeV only the ΞcK̄ channel is
open for decay, precisely the channel where it has been
observed, and the coupling of the state to this channel is
very small. However, for the state at 3091 MeV the Ξ0

cK̄
channel is also open, and the coupling to this channel is
considerable. Furthermore, the coupling to ΞcK̄ is bigger
than before and there is more phase space for decay.
Next we look for the states of JP ¼ 3=2− from the

pseudoscalar-baryonð3=2þÞ interaction. In Table IV we see
that the pseudoscalar-baryonð3=2þÞ states do not couple to
the vector-baryon channels and we can separate two blocks,
the channels Ξ&

cK̄, Ω&
cη, Ξ&D and ΞD&, ΞcK̄&, Ξ0

cK̄&. The
first three channels in s-wave give rise to JP ¼ 3=2−, while
the other three give rise to JP ¼ 1=2−, 3=2−, degenerated in
our approach. We then separate these two sets of states.
InTableVIIweshowthe results forJP ¼ 3=2− fordifferent

values of the cutoff. We see that we get two poles. Yet, if we

choose the same cutoff as in the JP ¼ 1=2− sector we find a
mass of 3125MeVand zerowidth for the lowest state. As we
can see, the mass is smaller than all the thresholds in Table II;
hence it does not decay into them.To decay intoΞcK̄, where it
has been observed, we would need the exchange of vector
mesons in p-wave, which give rise to a small width. We can
clearly associate the state found with theΩcð3119Þ observed
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to Ξ&
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Table IX together with the couplings to each channel.
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respectively. The widths could be bigger if we had
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3134.39 3124.84 3112.83 3099.2 3084.52
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An example of how the MB → M ′B′ potential is obtained combining the two vertices of Fig. 1 and the vector propagator is
shown in the Appendix of Ref. [76]. It is very easy and we refrain from repeating it here.

The evaluation of the transition potential Vij from one channel to another in the blocks we have selected is then straightfor-
ward, but we can simplify the calculation with the following observation [83]. Since the V BB vertex is spin independent we
classify the state in blocks that have χMS(23), χMA(23) and χS . Since χMS(12) have overlap with χMS(23) and χMA(23),
we must keep the states of χMS(12) in the blocks of χMS(23) and χMA(23). The overlap of these spin functions are given by

⟨χMS(12)|χMS(23)⟩ = −
1

2
, (11)

⟨χMS(12)|χMA(23)⟩ = −
√
3

2
. (12)

However, even if the Ξ′
cD and ΞcD states do not mix in the calculation of the potential, in the T matrix they will mix through

the intermediate ΞccK̄ and Ωccη states. Hence, we write the matrix Vij for all the states of PB. This said, we have the following
blocks.

D. Spin blocks for Ωcc state

i) PB(12
+
) channels: ΞccK̄ , Ωccη, ΞcD, and Ξ′

cD.

ii) PB(32
+
) channels: Ξ∗

ccK̄ , Ω∗
ccη, Ξ∗

cD

iii) V B(12
+
) channels: ΞccK̄∗, ΞcD∗, Ωccω, and Ξ′

cD
∗.

iv) V B(32
+
) channels: Ξ∗

ccK̄
∗, Ω∗

ccω, Ξ∗
cD

∗.

The interaction obtained for the mechanism of Fig. 1 is always of the type

Vij = −
1

4f2
π

(p01 + p03)Cij , (13)

where p01, p03 are the energies of the initial and final mesons, respectively. The coefficient Cij are then evaluated and we find the
following tables for the blocks described before. The λ below is a suppression factor of the order m2

V /m
2
D∗ coming from the

exchange of a D∗ rather than a light vector. Following Ref. [76] we take the value λ = 0.25 in the numerical calculations.

TABLE V: Coefficients Cij for the PB sector with JP = 1

2

−
.

ΞccK̄ Ωccη ΞcD Ξ′
cD

ΞccK̄ 2 2
√

2√
3

−
√
3

2
√

2
λ 1

2
√

2
λ

Ωccη 0 −
1

2
λ −1

2
√

3
λ

ΞcD 2 0

Ξ′
cD 2

TABLE VI: Coefficients Cij for the VB sector with JP = 1

2

−
, 3

2

−
.

ΞcD
∗ Ωccω ΞccK̄

∗ Ξ′
cD

∗

ΞcD
∗ 2 −

√
3

2
√

2
λ −

√
3

2
√

2
λ 0

Ωccω 0 1 −1

2
√

2
λ

ΞccK̄
∗ 2 1

2
√

2
λ

Ξ′
cD

∗ 2

T = [1� V G]�1V
BS equation

17
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TABLE XVI: Coefficients Cij for the VB sector with JP = 1

2

−
, 3

2

−
, 5

2

−
.

Ω∗
bcω Ξ∗

bcK̄
∗ Ξ∗

bD
∗ Ξ∗

cB̄
∗

Ω∗
bcω 0 1 λ 0

Ξ∗
bcK̄

∗ 2 λ 0

Ξ∗
bD

∗ 2 0

Ξ∗
c B̄

∗ 2

G. Scattering matrix and pole

Once the Vij potential has been calculated we obtain the scattering matrix in the Bethe-Salpeter equation in coupled channels

T = [1− V G]−1V (14)

in the matrix form, where G is the diagonal loop function for the meson baryon intermediate state, which we take in the cutoff
form as in [76] with qmax = 650 MeV.

The poles are reached in the second Riemann sheet for which we change G → GII as

GII
j = GI

j + i
2Mj q

4π
√
s
, (15)

for Re
√
s > mj +Mj , and q given by

q =
λ1/2(s,m2

j ,M
2
j )

2
√
s

, (16)

with mj and Mj the masses of the meson and baryon, respectively. We also evaluate the couplings defined from the residue at
the pole where the amplitudes go as

Tij =
gigj

z − zR
, (17)

with zR the complex energy (M, iΓ/2). We choose one sign for one gi and the rest of the couplings have the relative sign well
defined. We also show giGII

i , which gives the wave function at the origin in coordinate space [107].

III. RESULTS

In the first place we write in Table XVII the masses of the mesons and baryons which are needed for the calculations. Those
not in the PDG [108] are taken from [109]. For further discussion about the energies obtained, we also show the masses of the
thresholds of the different channels in Table I.

TABLE XVII: Masses of mesons and baryons in the units of MeV, the values not in the PDG [108] are taken from [109].

States K̄ η D B̄ ω K̄∗ D∗

Masses 493 548 1870 5279 780 890 2010

States B̄∗ Ξc Ξ′
c Ξ∗

c Ξb Ξ′
b Ξ∗

b

Masses 5325 2468 2578 2646 5797 5935 5952

States Ξcc Ξ∗
cc Ξbb Ξ∗

bb Ξbc Ξ′
bc Ξ∗

bc

Masses 3622 3675 10340 10370 6922 6948 6973

States Ωcc Ω∗
cc Ωbb Ω∗

bb Ωbc Ω′
bc Ω∗

bc

Masses 3715 3772 10230 10258 7011 7047 7066

A. Poles and their coupling constants of Ωcc

In Tables XVIII-XXI we write the masses of the states obtained, together with the couplings to each channel and the wave
function at the origin. The calculations have been done using qmax = 650 MeV, which was found suited for the study of the Ωc
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not in the PDG [108] are taken from [109]. For further discussion about the energies obtained, we also show the masses of the
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A. Poles and their coupling constants of Ωcc

In Tables XVIII-XXI we write the masses of the states obtained, together with the couplings to each channel and the wave
function at the origin. The calculations have been done using qmax = 650 MeV, which was found suited for the study of the Ωc
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An example of how the MB → M ′B′ potential is obtained combining the two vertices of Fig. 1 and the vector propagator is
shown in the Appendix of Ref. [76]. It is very easy and we refrain from repeating it here.

The evaluation of the transition potential Vij from one channel to another in the blocks we have selected is then straightfor-
ward, but we can simplify the calculation with the following observation [83]. Since the V BB vertex is spin independent we
classify the state in blocks that have χMS(23), χMA(23) and χS . Since χMS(12) have overlap with χMS(23) and χMA(23),
we must keep the states of χMS(12) in the blocks of χMS(23) and χMA(23). The overlap of these spin functions are given by

⟨χMS(12)|χMS(23)⟩ = −
1

2
, (11)

⟨χMS(12)|χMA(23)⟩ = −
√
3

2
. (12)

However, even if the Ξ′
cD and ΞcD states do not mix in the calculation of the potential, in the T matrix they will mix through

the intermediate ΞccK̄ and Ωccη states. Hence, we write the matrix Vij for all the states of PB. This said, we have the following
blocks.

D. Spin blocks for Ωcc state

i) PB(12
+
) channels: ΞccK̄ , Ωccη, ΞcD, and Ξ′

cD.

ii) PB(32
+
) channels: Ξ∗

ccK̄ , Ω∗
ccη, Ξ∗

cD

iii) V B(12
+
) channels: ΞccK̄∗, ΞcD∗, Ωccω, and Ξ′

cD
∗.

iv) V B(32
+
) channels: Ξ∗

ccK̄
∗, Ω∗

ccω, Ξ∗
cD

∗.

The interaction obtained for the mechanism of Fig. 1 is always of the type

Vij = −
1

4f2
π

(p01 + p03)Cij , (13)

where p01, p03 are the energies of the initial and final mesons, respectively. The coefficient Cij are then evaluated and we find the
following tables for the blocks described before. The λ below is a suppression factor of the order m2

V /m
2
D∗ coming from the

exchange of a D∗ rather than a light vector. Following Ref. [76] we take the value λ = 0.25 in the numerical calculations.

TABLE V: Coefficients Cij for the PB sector with JP = 1

2

−
.
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√
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3

−
√
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2
√
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2
√

2
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1

2
λ −1

2
√

3
λ
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TABLE VI: Coefficients Cij for the VB sector with JP = 1
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the pole where the amplitudes go as
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with zR the complex energy (M, iΓ/2). We choose one sign for one gi and the rest of the couplings have the relative sign well
defined. We also show giGII

i , which gives the wave function at the origin in coordinate space [107].

III. RESULTS

In the first place we write in Table XVII the masses of the mesons and baryons which are needed for the calculations. Those
not in the PDG [108] are taken from [109]. For further discussion about the energies obtained, we also show the masses of the
thresholds of the different channels in Table I.
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A. Poles and their coupling constants of Ωcc

In Tables XVIII-XXI we write the masses of the states obtained, together with the couplings to each channel and the wave
function at the origin. The calculations have been done using qmax = 650 MeV, which was found suited for the study of the Ωc
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shown in the Appendix of Ref. [76]. It is very easy and we refrain from repeating it here.

The evaluation of the transition potential Vij from one channel to another in the blocks we have selected is then straightfor-
ward, but we can simplify the calculation with the following observation [83]. Since the V BB vertex is spin independent we
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with zR the complex energy (M, iΓ/2). We choose one sign for one gi and the rest of the couplings have the relative sign well
defined. We also show giGII
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III. RESULTS

In the first place we write in Table XVII the masses of the mesons and baryons which are needed for the calculations. Those
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function at the origin. The calculations have been done using qmax = 650 MeV, which was found suited for the study of the Ωc
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states in [76], where three experimental states could be associated with molecular states. We write in bold characters the case of
the biggest coupling, and wave function at the origin, which indicates the most relevant channel.

TABLE XVIII: The poles for Ωcc along with their coupling constants (in units of MeV) to various channels in the JP = 1

2

−
sector from

PB( 1
2

+
).

Poles ΞccK̄ Ωccη ΞcD Ξ′
cD

4069.86
gi 2.63 1.55 −1.10 0.26

giG
II
i −40.42 −13.26 3.59 −0.65

4205.22 + i0.94
gi 0.10 + i0.20 0.04 + i0.09 6.25− i0.04 0.09 + i0.01

giG
II
i −5.86− i1.84 −0.57− i1.32 −31.79 + i0.06 −0.30− i0.05

4310.76 + i0.28
gi 0.02 + i0.01 −0.13− i0.04 −0.02 + i0.00 6.35+ i0.00

giG
II
i −0.45 + i0.64 3.47− i0.96 0.23− i0.01 −31.95− i0.05

TABLE XIX: The poles for Ωcc along with their coupling constants (in units of MeV) to various channels in the JP = 1

2
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, 3
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V B( 1
2

+
).
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∗ Ωccω ΞccK̄
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cD

∗
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gi 6.51 −0.70 −1.35 −0.07

giG
II
i −29.78 5.66 9.74 0.23

4405.47
gi 1.27 1.41 3.81 0.83

giGII
i −8.44 −15.17 −35.89 −3.33

4446.29
gi −0.08 −0.32 −0.24 6.58

giG
II
i 0.73 4.34 2.81 −30.80

TABLE XX: The poles for Ωcc along with their coupling constants (in units of MeV) to various channels in the JP = 3

2

−
sector from

PB( 3
2

+
).

Poles Ξ∗
ccK̄ Ω∗

ccη Ξ∗
cD

4123.85
gi 2.62 1.55 0.84

giGII
i −40.61 −13.14 −2.09

4380.36 + i0.73
gi −0.01− i0.15 0.02− i0.05 6.28− i0.03

giG
II
i 4.71 + i0.76 0.41 + i1.37 −31.94+ i0.05

TABLE XXI: The poles for Ωcc along with their coupling constants (in units of MeV) to various channels in the JP = 1
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By looking at Table XVIII we observe that we obtain states at 4070, 4205, 4311MeV. The widths, corresponding to twice the
imaginary part at the pole, are all below 2 MeV, the most relevant channels are the ΞccK̄ for the 4070 MeV, the ΞcD for the
4205 MeV and the Ξ′

cD for the 4311 MeV. The Ωccη channel has a relatively important weight also in the 4070 MeV state, but
is negligible in the other states. By looking at the thresholds in the Table I, we see that the 4070 MeV state could mostly qualify
as a ΞccK̄ molecule with a binding of about 45 MeV, the 4311 state would be mostly a ΞcD state bound by about 133 MeV and
the 4311 would correspond to a Ξ′

cD state bound by about 137 MeV. However we should not ignore that we have a mixture of
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shown in [87] that the states predicted in [86] could have already been observed in the experiment of Ref. [25] in the higher part
of the spectrum. Each of the cases requires an elaborate study of the interaction with many coupled channels.

Other works also look at these states from the molecular point of view using different formalism and dynamics. In [88] one
pion exchange and D(∗) exchange are used as a source of the dynamics to study Ξcc states. In [89], heavy flavor, heavy quark
spin, and heavy antiquark-diquark symmetries for hadronic molecules are considered within an effective field theory framework
to study pentaquarks and open bottom, baryonic states. In [90] the one boson exchange picture is used to study Ωc states.
Particular mention deserves the extended work in different sectors, light, charm and bottom of molecular states stemming from
meson-baryon interaction in coupled channels using SU(6)lsf × SU(2)HQSS symmetry, this is SU(6) flavor-spin symmetry in
the light sector and SU(2) in the heavy sector respecting heavy quark spin symmetry [74, 91, 92], extrapolating dynamics from
the Weinberg Tomozawa interaction. These works have the virtue of correlating many coupled channels in different sectors and
make qualitative predictions for bound states and resonances in a large span of quantum numbers. Ξb and Ξc states have been
recenty addressed from this point of view in [93].

A large number of studies of molecular states in the charm sector have been devoted to the study of pentaquarks Pc and Pcs.
These states have hidden charm and we are concerned about open charm and bottom, so we refrain from discussing this issue and
address the readers to review papers that also serve as reviews for open heavy quark baryonic molecular states [64, 65, 68, 94–97].

II. FORMALISM

A. Coupled channels for the Ωcc, Ωbb and Ωbc states

In the first place, we must select the coupled channels that we consider in the approach. The task is facilitated by looking at
the work of Ref [74]. We choose the same coupled channels eliminating only a few that appear at too high energy compared

to the bulk of them. After that, the coupled channels are separated into four blocks, PB(12
+
), PB(32

+
), V B(12

+
), V B(32

+
),

where P stands for the pseudoscalar meson, V for vector meson, B(12
+
) for ground state baryons with JP = 1

2

+
and B(32

+
)

for ground state baryons of JP = 3
2

+
. We do not mix these channels. The interaction in each block is constructed from the

exchange of vector mesons obtained from the extrapolation of the local hidden gauge approach [77–81] to the charm or bottom
sector [64, 65, 76, 82–86, 98]. The mixing of the blocks requires pion exchange, or of some other pseudoscalar, but these terms
are not competitive with the vector exchange terms in the determination of the masses of the obtained states. They can contribute
to the widths of the states, but in cases of many coupled channels where decay to states of lower mass can proceed via vector
exchange, they are again not competitive (see appendix of Ref [99]). Then the coupled channels that we consider are given
below and the interaction will be considered in s-wave, which determines the JP character of the states.

TABLE I: Threshold masses (in MeV) of different channels for Ωcc.

PB( 1
2

+
), JP = 1

2

− ΞccK̄ Ωccη ΞcD Ξ′
cD

4115 4263 4338 4448

PB( 3
2

+
), JP = 3

2

− Ξ∗
ccK̄ Ω∗

ccη Ξ∗
cD

4168 4320 4516

V B( 1
2

+
), JP = 1

2

−
, 3

2

− ΞccK̄∗ Ωccω ΞcD∗ Ξ′
cD

∗

4512 4495 4478 4588

V B( 3
2

+
), JP = 1

2

−
, 3

2

−
, 5

2

− Ξ∗
ccK̄

∗ Ω∗
ccω Ξ∗

cD
∗

4565 4552 4656

We obtain spin degenerate states in some cases. The degeneracy is expected to be broken with the consideration of pseu-
doscalar exchange terms, but with the former considerations we expect this breaking to be small. One idea of effects expected
can be seen in the splitting of the two pentaquarks states Pc2 at 4440.3 MeV and Pc3 at 4457.3 MeV [28] from the value of the

previous experiment [27] combining the two states with a peak at 4450 MeV. These states are degenerate in JP = 1
2

−
, 3
2

−
for

the predictions done in [100] mostly as a D̄∗Σc state, and nearly degenerate in [101] where a small admixture of channels is
allowed. The splitting of the states is better obtained in works considering pion exchange terms explicitly [102–104].
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states in [76], where three experimental states could be associated with molecular states. We write in bold characters the case of
the biggest coupling, and wave function at the origin, which indicates the most relevant channel.

TABLE XVIII: The poles for Ωcc along with their coupling constants (in units of MeV) to various channels in the JP = 1

2

−
sector from

PB( 1
2

+
).

Poles ΞccK̄ Ωccη ΞcD Ξ′
cD

4069.86
gi 2.63 1.55 −1.10 0.26

giG
II
i −40.42 −13.26 3.59 −0.65

4205.22 + i0.94
gi 0.10 + i0.20 0.04 + i0.09 6.25− i0.04 0.09 + i0.01

giG
II
i −5.86− i1.84 −0.57− i1.32 −31.79 + i0.06 −0.30− i0.05

4310.76 + i0.28
gi 0.02 + i0.01 −0.13− i0.04 −0.02 + i0.00 6.35+ i0.00

giG
II
i −0.45 + i0.64 3.47− i0.96 0.23− i0.01 −31.95− i0.05

TABLE XIX: The poles for Ωcc along with their coupling constants (in units of MeV) to various channels in the JP = 1

2

−
, 3

2

−
sector from

V B( 1
2

+
).

Poles ΞcD
∗ Ωccω ΞccK̄

∗ Ξ′
cD

∗

4332.86
gi 6.51 −0.70 −1.35 −0.07

giG
II
i −29.78 5.66 9.74 0.23

4405.47
gi 1.27 1.41 3.81 0.83

giGII
i −8.44 −15.17 −35.89 −3.33

4446.29
gi −0.08 −0.32 −0.24 6.58

giG
II
i 0.73 4.34 2.81 −30.80

TABLE XX: The poles for Ωcc along with their coupling constants (in units of MeV) to various channels in the JP = 3

2

−
sector from

PB( 3
2

+
).

Poles Ξ∗
ccK̄ Ω∗

ccη Ξ∗
cD

4123.85
gi 2.62 1.55 0.84

giGII
i −40.61 −13.14 −2.09

4380.36 + i0.73
gi −0.01− i0.15 0.02− i0.05 6.28− i0.03

giG
II
i 4.71 + i0.76 0.41 + i1.37 −31.94+ i0.05

TABLE XXI: The poles for Ωcc along with their coupling constants (in units of MeV) to various channels in the JP = 1

2

−
, 3

2

−
, 5

2

−
sector

from V B( 3
2

+
).

Poles Ω∗
ccω Ξ∗

ccK̄
∗ Ξ∗

cD
∗

4446.59
gi 1.59 3.93 2.64

giG
II
i −16.03 −35.31 −9.69

4520.38
gi −0.18 −0.94 6.10

giG
II
i 2.78 12.44 −29.41

By looking at Table XVIII we observe that we obtain states at 4070, 4205, 4311MeV. The widths, corresponding to twice the
imaginary part at the pole, are all below 2 MeV, the most relevant channels are the ΞccK̄ for the 4070 MeV, the ΞcD for the
4205 MeV and the Ξ′

cD for the 4311 MeV. The Ωccη channel has a relatively important weight also in the 4070 MeV state, but
is negligible in the other states. By looking at the thresholds in the Table I, we see that the 4070 MeV state could mostly qualify
as a ΞccK̄ molecule with a binding of about 45 MeV, the 4311 state would be mostly a ΞcD state bound by about 133 MeV and
the 4311 would correspond to a Ξ′

cD state bound by about 137 MeV. However we should not ignore that we have a mixture of

JP
=

1

2

�
sector from PB(

1

2

+

)

only show the results with the pseudoscalar-baryon inter-
action. This sector decouples from the vector-baryon one,
where the states obtained degenerate in JP ¼ 1=2−, 3=2−.
We come back to this sector later on.
We can see that we always get two states in the range of

the masses observed experimentally. The strategy followed
in these calculations is to fine-tune the cutoff to adjust
the pole position to some experimental data. We see that if
we take qmax ¼ 650 MeV the results agree well with the
second and fourth resonances reported in Ref. [1],
Ωcð3050Þ and Ωcð3090Þ. It is interesting to note that cutoff
values of this order are used in Ref. [70] for K̄N or in
Ref. [71] for DN. Fitting one resonance is partly a merit of
fine-tuning the cutoff, but then the second resonance and
the widths are genuine predictions of the theory. Note that
the widths are respectively 0.88 and 10.24 MeV, which
agree remarkably well with the experiment, 0.8$ 0.2$ 0.1
and 8.7$ 1.0$ 0.8 MeV, respectively. It is instructive to
see the origin of the widths. For this we look at Table VI for
the couplings to the different channels. We can see that
for the lower state at 3054 MeV only the ΞcK̄ channel is
open for decay, precisely the channel where it has been
observed, and the coupling of the state to this channel is
very small. However, for the state at 3091 MeV the Ξ0

cK̄
channel is also open, and the coupling to this channel is
considerable. Furthermore, the coupling to ΞcK̄ is bigger
than before and there is more phase space for decay.
Next we look for the states of JP ¼ 3=2− from the

pseudoscalar-baryonð3=2þÞ interaction. In Table IV we see
that the pseudoscalar-baryonð3=2þÞ states do not couple to
the vector-baryon channels and we can separate two blocks,
the channels Ξ&

cK̄, Ω&
cη, Ξ&D and ΞD&, ΞcK̄&, Ξ0

cK̄&. The
first three channels in s-wave give rise to JP ¼ 3=2−, while
the other three give rise to JP ¼ 1=2−, 3=2−, degenerated in
our approach. We then separate these two sets of states.
InTableVIIweshowthe results forJP ¼ 3=2− fordifferent

values of the cutoff. We see that we get two poles. Yet, if we

choose the same cutoff as in the JP ¼ 1=2− sector we find a
mass of 3125MeVand zerowidth for the lowest state. As we
can see, the mass is smaller than all the thresholds in Table II;
hence it does not decay into them.To decay intoΞcK̄, where it
has been observed, we would need the exchange of vector
mesons in p-wave, which give rise to a small width. We can
clearly associate the state found with theΩcð3119Þ observed
experimentally, which has a width of 1.1$ 0.8$ 0.4 MeV.
The agreement is also remarkable.
In Table VIII we show the couplings of the states to the

coupled channels of Table II. We can see that the state at
3125 MeV couples strongly to Ξ&

cK̄ andΩ&
cη, more strongly

to Ξ&
cK̄. The higher state, at 3290 MeV, couples very

strongly to Ξ&D.
For the vector-baryon states with JP ¼ 1=2−, 3=2− we

choose the samecutoffqmax ¼ 650 MeV thatwehave chosen
in the former cases and find three states that we show in
Table IX together with the couplings to each channel.
The first state obtained has zero width and couples

mostly to ΞD& while the second and third ones have very
small widths and couple mostly to ΞcK̄& and Ξ0

cK̄&,
respectively. The widths could be bigger if we had
considered vector-baryon transitions to a pseudoscalar-
baryon channel but we argued that they were small in
any case and neglected them in our study.
It is interesting to compare our results with those of

Ref. [41]. The main feature is that the results obtained are
remarkably similar. In Ref. [41] two states of JP ¼ 1=2−

are also found that compare well with the Ωcð3050Þ and
Ωcð3090Þ, as we have found here. The width of the second
state is about 17 MeV, while we get 10 MeV closer to the
experimental value. In Ref. [41] two sets of subtraction
constants (cutoffs) are used and in one of them the width of
this state is 12 MeV, at the expense of using a somewhat
small cutoff in the ΞcK̄ decay channel of 320 MeV. Even
then, the main channels and the strengths of the couplings
are similar to ours.

TABLE VI. The coupling constants to various channels for the poles in the JP ¼ 1=2− sector, with qmax ¼ 650 MeV, and giGII
i in

MeV.

3054.05þ i0.44 ΞcK̄ Ξ0
cK̄ ΞD Ωcη ΞD& ΞcK̄& Ξ0

cK̄&

gi −0.06þ i0.14 1.94þ i0.01 −2.14þ i0.26 1.98þ i0.01 0 0 0
giGII

i −1.40 − i3.85 −34.41 − i0.30 9.33 − i1.10 −16.81 − i0.11 0 0 0

3091.28þ i5.12 ΞcK̄ Ξ0
cK̄ ΞD Ωcη ΞD& ΞcK̄& Ξ0

cK̄&

gi 0.18 − i0.37 0.31þ i0.25 5.83 − i0.20 0.38þ i0.23 0 0 0
giGII

i 5.05þ i10.19 −9.97 − i3.67 −29.82þ i0.31 −3.59 − i2.23 0 0 0

TABLE VII. Poles in the JP ¼ 3=2− sector from pseudoscalar-baryonð3=2þÞ interaction (units, MeV).

qmax 600 650 700 750 800

3134.39 3124.84 3112.83 3099.2 3084.52
3316.48þ i0.14 3290.31þ i0.03 3260.42þ i0.08 3227.34þ i0.15 3191.13þ i0.22
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only show the results with the pseudoscalar-baryon inter-
action. This sector decouples from the vector-baryon one,
where the states obtained degenerate in JP ¼ 1=2−, 3=2−.
We come back to this sector later on.
We can see that we always get two states in the range of

the masses observed experimentally. The strategy followed
in these calculations is to fine-tune the cutoff to adjust
the pole position to some experimental data. We see that if
we take qmax ¼ 650 MeV the results agree well with the
second and fourth resonances reported in Ref. [1],
Ωcð3050Þ and Ωcð3090Þ. It is interesting to note that cutoff
values of this order are used in Ref. [70] for K̄N or in
Ref. [71] for DN. Fitting one resonance is partly a merit of
fine-tuning the cutoff, but then the second resonance and
the widths are genuine predictions of the theory. Note that
the widths are respectively 0.88 and 10.24 MeV, which
agree remarkably well with the experiment, 0.8$ 0.2$ 0.1
and 8.7$ 1.0$ 0.8 MeV, respectively. It is instructive to
see the origin of the widths. For this we look at Table VI for
the couplings to the different channels. We can see that
for the lower state at 3054 MeV only the ΞcK̄ channel is
open for decay, precisely the channel where it has been
observed, and the coupling of the state to this channel is
very small. However, for the state at 3091 MeV the Ξ0

cK̄
channel is also open, and the coupling to this channel is
considerable. Furthermore, the coupling to ΞcK̄ is bigger
than before and there is more phase space for decay.
Next we look for the states of JP ¼ 3=2− from the

pseudoscalar-baryonð3=2þÞ interaction. In Table IV we see
that the pseudoscalar-baryonð3=2þÞ states do not couple to
the vector-baryon channels and we can separate two blocks,
the channels Ξ&

cK̄, Ω&
cη, Ξ&D and ΞD&, ΞcK̄&, Ξ0

cK̄&. The
first three channels in s-wave give rise to JP ¼ 3=2−, while
the other three give rise to JP ¼ 1=2−, 3=2−, degenerated in
our approach. We then separate these two sets of states.
InTableVIIweshowthe results forJP ¼ 3=2− fordifferent

values of the cutoff. We see that we get two poles. Yet, if we

choose the same cutoff as in the JP ¼ 1=2− sector we find a
mass of 3125MeVand zerowidth for the lowest state. As we
can see, the mass is smaller than all the thresholds in Table II;
hence it does not decay into them.To decay intoΞcK̄, where it
has been observed, we would need the exchange of vector
mesons in p-wave, which give rise to a small width. We can
clearly associate the state found with theΩcð3119Þ observed
experimentally, which has a width of 1.1$ 0.8$ 0.4 MeV.
The agreement is also remarkable.
In Table VIII we show the couplings of the states to the

coupled channels of Table II. We can see that the state at
3125 MeV couples strongly to Ξ&

cK̄ andΩ&
cη, more strongly

to Ξ&
cK̄. The higher state, at 3290 MeV, couples very

strongly to Ξ&D.
For the vector-baryon states with JP ¼ 1=2−, 3=2− we

choose the samecutoffqmax ¼ 650 MeV thatwehave chosen
in the former cases and find three states that we show in
Table IX together with the couplings to each channel.
The first state obtained has zero width and couples

mostly to ΞD& while the second and third ones have very
small widths and couple mostly to ΞcK̄& and Ξ0

cK̄&,
respectively. The widths could be bigger if we had
considered vector-baryon transitions to a pseudoscalar-
baryon channel but we argued that they were small in
any case and neglected them in our study.
It is interesting to compare our results with those of

Ref. [41]. The main feature is that the results obtained are
remarkably similar. In Ref. [41] two states of JP ¼ 1=2−

are also found that compare well with the Ωcð3050Þ and
Ωcð3090Þ, as we have found here. The width of the second
state is about 17 MeV, while we get 10 MeV closer to the
experimental value. In Ref. [41] two sets of subtraction
constants (cutoffs) are used and in one of them the width of
this state is 12 MeV, at the expense of using a somewhat
small cutoff in the ΞcK̄ decay channel of 320 MeV. Even
then, the main channels and the strengths of the couplings
are similar to ours.

TABLE VI. The coupling constants to various channels for the poles in the JP ¼ 1=2− sector, with qmax ¼ 650 MeV, and giGII
i in

MeV.

3054.05þ i0.44 ΞcK̄ Ξ0
cK̄ ΞD Ωcη ΞD& ΞcK̄& Ξ0

cK̄&

gi −0.06þ i0.14 1.94þ i0.01 −2.14þ i0.26 1.98þ i0.01 0 0 0
giGII

i −1.40 − i3.85 −34.41 − i0.30 9.33 − i1.10 −16.81 − i0.11 0 0 0

3091.28þ i5.12 ΞcK̄ Ξ0
cK̄ ΞD Ωcη ΞD& ΞcK̄& Ξ0

cK̄&

gi 0.18 − i0.37 0.31þ i0.25 5.83 − i0.20 0.38þ i0.23 0 0 0
giGII

i 5.05þ i10.19 −9.97 − i3.67 −29.82þ i0.31 −3.59 − i2.23 0 0 0

TABLE VII. Poles in the JP ¼ 3=2− sector from pseudoscalar-baryonð3=2þÞ interaction (units, MeV).
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states in [76], where three experimental states could be associated with molecular states. We write in bold characters the case of
the biggest coupling, and wave function at the origin, which indicates the most relevant channel.

TABLE XVIII: The poles for Ωcc along with their coupling constants (in units of MeV) to various channels in the JP = 1

2

−
sector from

PB( 1
2

+
).

Poles ΞccK̄ Ωccη ΞcD Ξ′
cD

4069.86
gi 2.63 1.55 −1.10 0.26

giG
II
i −40.42 −13.26 3.59 −0.65

4205.22 + i0.94
gi 0.10 + i0.20 0.04 + i0.09 6.25− i0.04 0.09 + i0.01

giG
II
i −5.86− i1.84 −0.57− i1.32 −31.79 + i0.06 −0.30− i0.05

4310.76 + i0.28
gi 0.02 + i0.01 −0.13− i0.04 −0.02 + i0.00 6.35+ i0.00

giG
II
i −0.45 + i0.64 3.47− i0.96 0.23− i0.01 −31.95− i0.05

TABLE XIX: The poles for Ωcc along with their coupling constants (in units of MeV) to various channels in the JP = 1

2

−
, 3

2

−
sector from

V B( 1
2

+
).

Poles ΞcD
∗ Ωccω ΞccK̄

∗ Ξ′
cD

∗

4332.86
gi 6.51 −0.70 −1.35 −0.07

giG
II
i −29.78 5.66 9.74 0.23

4405.47
gi 1.27 1.41 3.81 0.83

giGII
i −8.44 −15.17 −35.89 −3.33

4446.29
gi −0.08 −0.32 −0.24 6.58

giG
II
i 0.73 4.34 2.81 −30.80

TABLE XX: The poles for Ωcc along with their coupling constants (in units of MeV) to various channels in the JP = 3

2

−
sector from

PB( 3
2

+
).

Poles Ξ∗
ccK̄ Ω∗

ccη Ξ∗
cD

4123.85
gi 2.62 1.55 0.84

giGII
i −40.61 −13.14 −2.09

4380.36 + i0.73
gi −0.01− i0.15 0.02− i0.05 6.28− i0.03

giG
II
i 4.71 + i0.76 0.41 + i1.37 −31.94+ i0.05

TABLE XXI: The poles for Ωcc along with their coupling constants (in units of MeV) to various channels in the JP = 1

2

−
, 3

2

−
, 5

2

−
sector

from V B( 3
2

+
).

Poles Ω∗
ccω Ξ∗

ccK̄
∗ Ξ∗

cD
∗

4446.59
gi 1.59 3.93 2.64

giG
II
i −16.03 −35.31 −9.69

4520.38
gi −0.18 −0.94 6.10

giG
II
i 2.78 12.44 −29.41

By looking at Table XVIII we observe that we obtain states at 4070, 4205, 4311MeV. The widths, corresponding to twice the
imaginary part at the pole, are all below 2 MeV, the most relevant channels are the ΞccK̄ for the 4070 MeV, the ΞcD for the
4205 MeV and the Ξ′

cD for the 4311 MeV. The Ωccη channel has a relatively important weight also in the 4070 MeV state, but
is negligible in the other states. By looking at the thresholds in the Table I, we see that the 4070 MeV state could mostly qualify
as a ΞccK̄ molecule with a binding of about 45 MeV, the 4311 state would be mostly a ΞcD state bound by about 133 MeV and
the 4311 would correspond to a Ξ′

cD state bound by about 137 MeV. However we should not ignore that we have a mixture of

JP
=

1

2

�
sector from PB(

1

2

+

)

only show the results with the pseudoscalar-baryon inter-
action. This sector decouples from the vector-baryon one,
where the states obtained degenerate in JP ¼ 1=2−, 3=2−.
We come back to this sector later on.
We can see that we always get two states in the range of

the masses observed experimentally. The strategy followed
in these calculations is to fine-tune the cutoff to adjust
the pole position to some experimental data. We see that if
we take qmax ¼ 650 MeV the results agree well with the
second and fourth resonances reported in Ref. [1],
Ωcð3050Þ and Ωcð3090Þ. It is interesting to note that cutoff
values of this order are used in Ref. [70] for K̄N or in
Ref. [71] for DN. Fitting one resonance is partly a merit of
fine-tuning the cutoff, but then the second resonance and
the widths are genuine predictions of the theory. Note that
the widths are respectively 0.88 and 10.24 MeV, which
agree remarkably well with the experiment, 0.8$ 0.2$ 0.1
and 8.7$ 1.0$ 0.8 MeV, respectively. It is instructive to
see the origin of the widths. For this we look at Table VI for
the couplings to the different channels. We can see that
for the lower state at 3054 MeV only the ΞcK̄ channel is
open for decay, precisely the channel where it has been
observed, and the coupling of the state to this channel is
very small. However, for the state at 3091 MeV the Ξ0

cK̄
channel is also open, and the coupling to this channel is
considerable. Furthermore, the coupling to ΞcK̄ is bigger
than before and there is more phase space for decay.
Next we look for the states of JP ¼ 3=2− from the

pseudoscalar-baryonð3=2þÞ interaction. In Table IV we see
that the pseudoscalar-baryonð3=2þÞ states do not couple to
the vector-baryon channels and we can separate two blocks,
the channels Ξ&

cK̄, Ω&
cη, Ξ&D and ΞD&, ΞcK̄&, Ξ0

cK̄&. The
first three channels in s-wave give rise to JP ¼ 3=2−, while
the other three give rise to JP ¼ 1=2−, 3=2−, degenerated in
our approach. We then separate these two sets of states.
InTableVIIweshowthe results forJP ¼ 3=2− fordifferent

values of the cutoff. We see that we get two poles. Yet, if we

choose the same cutoff as in the JP ¼ 1=2− sector we find a
mass of 3125MeVand zerowidth for the lowest state. As we
can see, the mass is smaller than all the thresholds in Table II;
hence it does not decay into them.To decay intoΞcK̄, where it
has been observed, we would need the exchange of vector
mesons in p-wave, which give rise to a small width. We can
clearly associate the state found with theΩcð3119Þ observed
experimentally, which has a width of 1.1$ 0.8$ 0.4 MeV.
The agreement is also remarkable.
In Table VIII we show the couplings of the states to the

coupled channels of Table II. We can see that the state at
3125 MeV couples strongly to Ξ&

cK̄ andΩ&
cη, more strongly

to Ξ&
cK̄. The higher state, at 3290 MeV, couples very

strongly to Ξ&D.
For the vector-baryon states with JP ¼ 1=2−, 3=2− we

choose the samecutoffqmax ¼ 650 MeV thatwehave chosen
in the former cases and find three states that we show in
Table IX together with the couplings to each channel.
The first state obtained has zero width and couples

mostly to ΞD& while the second and third ones have very
small widths and couple mostly to ΞcK̄& and Ξ0

cK̄&,
respectively. The widths could be bigger if we had
considered vector-baryon transitions to a pseudoscalar-
baryon channel but we argued that they were small in
any case and neglected them in our study.
It is interesting to compare our results with those of

Ref. [41]. The main feature is that the results obtained are
remarkably similar. In Ref. [41] two states of JP ¼ 1=2−

are also found that compare well with the Ωcð3050Þ and
Ωcð3090Þ, as we have found here. The width of the second
state is about 17 MeV, while we get 10 MeV closer to the
experimental value. In Ref. [41] two sets of subtraction
constants (cutoffs) are used and in one of them the width of
this state is 12 MeV, at the expense of using a somewhat
small cutoff in the ΞcK̄ decay channel of 320 MeV. Even
then, the main channels and the strengths of the couplings
are similar to ours.

TABLE VI. The coupling constants to various channels for the poles in the JP ¼ 1=2− sector, with qmax ¼ 650 MeV, and giGII
i in

MeV.

3054.05þ i0.44 ΞcK̄ Ξ0
cK̄ ΞD Ωcη ΞD& ΞcK̄& Ξ0

cK̄&

gi −0.06þ i0.14 1.94þ i0.01 −2.14þ i0.26 1.98þ i0.01 0 0 0
giGII

i −1.40 − i3.85 −34.41 − i0.30 9.33 − i1.10 −16.81 − i0.11 0 0 0

3091.28þ i5.12 ΞcK̄ Ξ0
cK̄ ΞD Ωcη ΞD& ΞcK̄& Ξ0

cK̄&

gi 0.18 − i0.37 0.31þ i0.25 5.83 − i0.20 0.38þ i0.23 0 0 0
giGII

i 5.05þ i10.19 −9.97 − i3.67 −29.82þ i0.31 −3.59 − i2.23 0 0 0

TABLE VII. Poles in the JP ¼ 3=2− sector from pseudoscalar-baryonð3=2þÞ interaction (units, MeV).

qmax 600 650 700 750 800

3134.39 3124.84 3112.83 3099.2 3084.52
3316.48þ i0.14 3290.31þ i0.03 3260.42þ i0.08 3227.34þ i0.15 3191.13þ i0.22
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Table IX together with the couplings to each channel.
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small widths and couple mostly to ΞcK̄& and Ξ0

cK̄&,
respectively. The widths could be bigger if we had
considered vector-baryon transitions to a pseudoscalar-
baryon channel but we argued that they were small in
any case and neglected them in our study.
It is interesting to compare our results with those of

Ref. [41]. The main feature is that the results obtained are
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are also found that compare well with the Ωcð3050Þ and
Ωcð3090Þ, as we have found here. The width of the second
state is about 17 MeV, while we get 10 MeV closer to the
experimental value. In Ref. [41] two sets of subtraction
constants (cutoffs) are used and in one of them the width of
this state is 12 MeV, at the expense of using a somewhat
small cutoff in the ΞcK̄ decay channel of 320 MeV. Even
then, the main channels and the strengths of the couplings
are similar to ours.
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states in [76], where three experimental states could be associated with molecular states. We write in bold characters the case of
the biggest coupling, and wave function at the origin, which indicates the most relevant channel.

TABLE XVIII: The poles for Ωcc along with their coupling constants (in units of MeV) to various channels in the JP = 1

2

−
sector from

PB( 1
2

+
).

Poles ΞccK̄ Ωccη ΞcD Ξ′
cD

4069.86
gi 2.63 1.55 −1.10 0.26

giG
II
i −40.42 −13.26 3.59 −0.65

4205.22 + i0.94
gi 0.10 + i0.20 0.04 + i0.09 6.25− i0.04 0.09 + i0.01

giG
II
i −5.86− i1.84 −0.57− i1.32 −31.79 + i0.06 −0.30− i0.05

4310.76 + i0.28
gi 0.02 + i0.01 −0.13− i0.04 −0.02 + i0.00 6.35+ i0.00

giG
II
i −0.45 + i0.64 3.47− i0.96 0.23− i0.01 −31.95− i0.05

TABLE XIX: The poles for Ωcc along with their coupling constants (in units of MeV) to various channels in the JP = 1

2

−
, 3

2

−
sector from

V B( 1
2

+
).

Poles ΞcD
∗ Ωccω ΞccK̄

∗ Ξ′
cD

∗

4332.86
gi 6.51 −0.70 −1.35 −0.07

giG
II
i −29.78 5.66 9.74 0.23

4405.47
gi 1.27 1.41 3.81 0.83

giGII
i −8.44 −15.17 −35.89 −3.33

4446.29
gi −0.08 −0.32 −0.24 6.58

giG
II
i 0.73 4.34 2.81 −30.80

TABLE XX: The poles for Ωcc along with their coupling constants (in units of MeV) to various channels in the JP = 3

2

−
sector from

PB( 3
2

+
).

Poles Ξ∗
ccK̄ Ω∗

ccη Ξ∗
cD

4123.85
gi 2.62 1.55 0.84

giGII
i −40.61 −13.14 −2.09

4380.36 + i0.73
gi −0.01− i0.15 0.02− i0.05 6.28− i0.03

giG
II
i 4.71 + i0.76 0.41 + i1.37 −31.94+ i0.05

TABLE XXI: The poles for Ωcc along with their coupling constants (in units of MeV) to various channels in the JP = 1

2

−
, 3

2

−
, 5

2

−
sector

from V B( 3
2

+
).

Poles Ω∗
ccω Ξ∗

ccK̄
∗ Ξ∗

cD
∗

4446.59
gi 1.59 3.93 2.64

giG
II
i −16.03 −35.31 −9.69

4520.38
gi −0.18 −0.94 6.10

giG
II
i 2.78 12.44 −29.41

By looking at Table XVIII we observe that we obtain states at 4070, 4205, 4311MeV. The widths, corresponding to twice the
imaginary part at the pole, are all below 2 MeV, the most relevant channels are the ΞccK̄ for the 4070 MeV, the ΞcD for the
4205 MeV and the Ξ′

cD for the 4311 MeV. The Ωccη channel has a relatively important weight also in the 4070 MeV state, but
is negligible in the other states. By looking at the thresholds in the Table I, we see that the 4070 MeV state could mostly qualify
as a ΞccK̄ molecule with a binding of about 45 MeV, the 4311 state would be mostly a ΞcD state bound by about 133 MeV and
the 4311 would correspond to a Ξ′

cD state bound by about 137 MeV. However we should not ignore that we have a mixture of

11
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the biggest coupling, and wave function at the origin, which indicates the most relevant channel.
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TABLE XX: The poles for Ωcc along with their coupling constants (in units of MeV) to various channels in the JP = 3
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−
sector from

PB( 3
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+
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Poles Ξ∗
ccK̄ Ω∗

ccη Ξ∗
cD

4123.85
gi 2.62 1.55 0.84

giGII
i −40.61 −13.14 −2.09

4380.36 + i0.73
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Poles Ω∗
ccω Ξ∗

ccK̄
∗ Ξ∗

cD
∗

4446.59
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II
i −16.03 −35.31 −9.69

4520.38
gi −0.18 −0.94 6.10
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II
i 2.78 12.44 −29.41

By looking at Table XVIII we observe that we obtain states at 4070, 4205, 4311MeV. The widths, corresponding to twice the
imaginary part at the pole, are all below 2 MeV, the most relevant channels are the ΞccK̄ for the 4070 MeV, the ΞcD for the
4205 MeV and the Ξ′

cD for the 4311 MeV. The Ωccη channel has a relatively important weight also in the 4070 MeV state, but
is negligible in the other states. By looking at the thresholds in the Table I, we see that the 4070 MeV state could mostly qualify
as a ΞccK̄ molecule with a binding of about 45 MeV, the 4311 state would be mostly a ΞcD state bound by about 133 MeV and
the 4311 would correspond to a Ξ′
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coupled channels in the wave functions and some components are less bound than others, hence it is not fully appropriate to put
all the binding in just one component, the total energies being the relevant magnitudes to be considered. In Table XIX we find
similar features to the former one with three states that couple mostly to ΞcD∗, ΞccK̄∗, and Ξ′

cD
∗ respectively.

In Table XX we obtain two states of PB(32
+
) nature structure at 4124 MeV and 4380 MeV which couple mostly to Ξ∗

ccK̄

and Ξ∗
cD respectively. The widths are also smaller than 2 MeV. In Table XXI we also obtain two states of V B(32

+
) nature, and

hence JP = 1
2

−
, 3
2

−
, 5
2

−
, that couple mostly to Ξ∗

ccK̄
∗ and Ξ∗

cD
∗ respectively. The widths are null with the space of states

considered, hence we expect them to be very small.

B. Poles and their coupling constants of Ωbb

In Table II we put the threshold of the channels involved in the calculations. In Tables XXII - XXV, we show the bound states
and resonances of Ωbb as well as their coupling constants to various channels, obtained with qmax = 650 MeV.

TABLE XXII: The poles for Ωbb along with their coupling constants (in units of MeV) to various channels in the JP = 1

2

−
sector from

PB( 1
2

+
).

Poles Ωbbη ΞbbK̄ ΞbB̄ Ξ′
bB̄

10741.65
gi 1.50 2.72 0 0

giG
II
i −25.56 −34.78 0 0

10864.15
gi 0 0 11.87 0

giG
II
i 0 0 −20.43 0

11001.63
gi 0 0 0 11.87

giG
II
i 0 0 0 −20.43

TABLE XXIII: The poles for Ωbb along with their coupling constants (in units of MeV) to various channels in the JP = 1

2

−
, 3

2

−
sector from

V B( 1
2

+
).

Poles Ωbbω ΞbB̄
∗ ΞbbK̄

∗ Ξ′
bB̄

∗

10909.88
gi 0 11.92 0 0

giG
II
i 0 −20.35 0 0

11047.36
gi 0 0 0 11.92

giGII
i 0 0 0 −20.34

TABLE XXIV: The poles for Ωbb along with their coupling constants (in units of MeV) to various channels in the JP = 3

2

−
sector from

PB( 3
2

+
).

Poles Ω∗
bbη Ξ∗

bbK̄ Ξ∗
b B̄

10770.91
gi 1.50 2.71 0

giG
II
i −25.70 −34.62 0

11018.56
gi 0 0 11.87

giG
II
i 0 0 −20.43

TABLE XXV: The poles for Ωbb along with their coupling constants (in units of MeV) to various channels in the JP = 1

2

−
, 3

2

−
, 5

2

−
sector

from V B( 3
2

+
).

Poles Ω∗
bbω Ξ∗

bbK̄
∗ Ξ∗

b B̄
∗

11064.30
gi 0 0 11.94

giGII
i 0 0 −20.37
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coupled channels in the wave functions and some components are less bound than others, hence it is not fully appropriate to put
all the binding in just one component, the total energies being the relevant magnitudes to be considered. In Table XIX we find
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∗ respectively. The widths are null with the space of states

considered, hence we expect them to be very small.

B. Poles and their coupling constants of Ωbb

In Table II we put the threshold of the channels involved in the calculations. In Tables XXII - XXV, we show the bound states
and resonances of Ωbb as well as their coupling constants to various channels, obtained with qmax = 650 MeV.
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sector from
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giG
II
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TABLE XXV: The poles for Ωbb along with their coupling constants (in units of MeV) to various channels in the JP = 1

2

−
, 3

2

−
, 5

2

−
sector

from V B( 3
2

+
).

Poles Ω∗
bbω Ξ∗

bbK̄
∗ Ξ∗

b B̄
∗

11064.30
gi 0 0 11.94

giGII
i 0 0 −20.37
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coupled channels in the wave functions and some components are less bound than others, hence it is not fully appropriate to put
all the binding in just one component, the total energies being the relevant magnitudes to be considered. In Table XIX we find
similar features to the former one with three states that couple mostly to ΞcD∗, ΞccK̄∗, and Ξ′

cD
∗ respectively.

In Table XX we obtain two states of PB(32
+
) nature structure at 4124 MeV and 4380 MeV which couple mostly to Ξ∗

ccK̄

and Ξ∗
cD respectively. The widths are also smaller than 2 MeV. In Table XXI we also obtain two states of V B(32

+
) nature, and

hence JP = 1
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−
, 3
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−
, 5
2

−
, that couple mostly to Ξ∗
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∗ and Ξ∗
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∗ respectively. The widths are null with the space of states

considered, hence we expect them to be very small.

B. Poles and their coupling constants of Ωbb

In Table II we put the threshold of the channels involved in the calculations. In Tables XXII - XXV, we show the bound states
and resonances of Ωbb as well as their coupling constants to various channels, obtained with qmax = 650 MeV.
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similar features to the former one with three states that couple mostly to ΞcD∗, ΞccK̄∗, and Ξ′

cD
∗ respectively.

In Table XX we obtain two states of PB(32
+
) nature structure at 4124 MeV and 4380 MeV which couple mostly to Ξ∗

ccK̄

and Ξ∗
cD respectively. The widths are also smaller than 2 MeV. In Table XXI we also obtain two states of V B(32

+
) nature, and

hence JP = 1
2

−
, 3
2

−
, 5
2

−
, that couple mostly to Ξ∗

ccK̄
∗ and Ξ∗

cD
∗ respectively. The widths are null with the space of states

considered, hence we expect them to be very small.

B. Poles and their coupling constants of Ωbb

In Table II we put the threshold of the channels involved in the calculations. In Tables XXII - XXV, we show the bound states
and resonances of Ωbb as well as their coupling constants to various channels, obtained with qmax = 650 MeV.

TABLE XXII: The poles for Ωbb along with their coupling constants (in units of MeV) to various channels in the JP = 1

2

−
sector from

PB( 1
2

+
).

Poles Ωbbη ΞbbK̄ ΞbB̄ Ξ′
bB̄

10741.65
gi 1.50 2.72 0 0

giG
II
i −25.56 −34.78 0 0

10864.15
gi 0 0 11.87 0

giG
II
i 0 0 −20.43 0

11001.63
gi 0 0 0 11.87

giG
II
i 0 0 0 −20.43

TABLE XXIII: The poles for Ωbb along with their coupling constants (in units of MeV) to various channels in the JP = 1

2

−
, 3

2

−
sector from

V B( 1
2

+
).

Poles Ωbbω ΞbB̄
∗ ΞbbK̄

∗ Ξ′
bB̄

∗

10909.88
gi 0 11.92 0 0

giG
II
i 0 −20.35 0 0

11047.36
gi 0 0 0 11.92

giGII
i 0 0 0 −20.34

TABLE XXIV: The poles for Ωbb along with their coupling constants (in units of MeV) to various channels in the JP = 3

2

−
sector from

PB( 3
2

+
).

Poles Ω∗
bbη Ξ∗

bbK̄ Ξ∗
b B̄

10770.91
gi 1.50 2.71 0

giG
II
i −25.70 −34.62 0

11018.56
gi 0 0 11.87

giG
II
i 0 0 −20.43

TABLE XXV: The poles for Ωbb along with their coupling constants (in units of MeV) to various channels in the JP = 1

2

−
, 3

2

−
, 5

2

−
sector

from V B( 3
2

+
).

Poles Ω∗
bbω Ξ∗

bbK̄
∗ Ξ∗

b B̄
∗

11064.30
gi 0 0 11.94

giGII
i 0 0 −20.37
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In Table XXII we show the states of JP = 1
2

−
coming from PB(12

+
). We obtain three states, one at 10742 MeV, another one

at 10864 MeV and another one at 11002 MeV, coupling mostly to ΞbbK̄ , ΞbB̄ and Ξ′
bB̄, respectively. The V B(12

+
) channels

shown in Table XXIII give rise to one state at 10910 MeV coupling to ΞbB̄∗ and another one at 11047 MeV coupling to Ξ′
bB̄

∗.
The widths in this case are null with the channels chosen and the approximations done.

For the case PB(32
+
) states, shown in Table XXIV, we obtain two states with JP = 3

2

−
, coupling mostly to Ξ∗

bbK̄ and Ξ∗
b B̄

respectively. Finally, in Table XXV we show the only state that we get for V B(32
+
), which couples to Ξ∗

bB̄
∗.

C. Poles and their coupling constants of Ωbc

We put the results for the threshold masses in Table III. In Tables XXVI - XXIX, we show the bound states and resonances of
Ωbc along with their coupling constants to various channels with qmax = 650 MeV.

TABLE XXVI: The poles for Ωbc along with their coupling constants (in units of MeV) to various channels in the JP = 1

2

−
sector from

PB( 1
2

+
).

Poles ΞbcK̄ Ξ′
bcK̄ Ωbcη Ω′

bcη ΞbD ΞcB̄ Ξ′
bD Ξ′

cB̄

7362.26
gi 2.64 0 1.57 0 1.70 0 0 0

giG
II
i −40.41 0 −13.52 0 −5.35 0 0 0

7392.60
gi 0 2.61 0 1.51 0 0 −0.73 0

giG
II
i 0 −41.08 0 −12.83 0 0 1.81 0

7514.32 + i2.21
gi −0.14− i0.27 0 −0.05− i0.13 0 6.19− i0.08 0 0 0

giG
II
i 9.18 + i2.42 0 0.83 + i2.04 0 −32.11+ i0.12 0 0 0

7566.65
gi 0 0 0 0 0 11.50 0 0

giG
II
i 0 0 0 0 0 −20.01 0 0

7641.20 + i2.26
gi 0 −0.06− i0.03 0 0.34 + i0.11 0 0 6.50+ i0.02 0

giG
II
i 0 1.60− i1.76 0 −10.29 + i2.74 0 0 −32.20− i0.41 0

7674.29
gi 0 0 0 0 0 0 0 11.53

giG
II
i 0 0 0 0 0 0 0 −20.05

TABLE XXVII: The poles for Ωbc along with their coupling constants (in units of MeV) to various channels in the JP = 1

2

−
, 3

2

−
sector from

V B( 1
2

+
).

Poles Ωbcω ΞcB̄
∗ ΞbD

∗ ΞbcK̄
∗ Ω′

bcω Ξ′
bcK̄

∗ Ξ′
cB̄

∗ Ξ′
bD

∗

7612.44
gi 0 11.56 0 0 0 0 0 0

giGII
i 0 −19.93 0 0 0 0 0 0

7627.73
gi 1.09 0 6.36 2.14 0 0 0 0

giG
II
i −9.13 0 −28.05 −15.65 0 0 0 0

7707.67
gi 1.19 0 −2.17 3.40 0 0 0 0

giGII
i −13.85 0 14.00 −33.94 0 0 0 0

7716.28
gi 0 0 0 0 1.43 4.03 0 −1.77

giG
II
i 0 0 0 0 −14.61 −37.19 0 6.54

7720.07
gi 0 0 0 0 0 0 11.59 0

giG
II
i 0 0 0 0 0 0 −19.97 0

7777.47
gi 0 0 0 0 0.78 0.38 0 6.50

giG
II
i 0 0 0 0 −11.04 −4.84 0 −30.09
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In Table XXII we show the states of JP = 1
2

−
coming from PB(12

+
). We obtain three states, one at 10742 MeV, another one

at 10864 MeV and another one at 11002 MeV, coupling mostly to ΞbbK̄ , ΞbB̄ and Ξ′
bB̄, respectively. The V B(12

+
) channels

shown in Table XXIII give rise to one state at 10910 MeV coupling to ΞbB̄∗ and another one at 11047 MeV coupling to Ξ′
bB̄

∗.
The widths in this case are null with the channels chosen and the approximations done.

For the case PB(32
+
) states, shown in Table XXIV, we obtain two states with JP = 3

2

−
, coupling mostly to Ξ∗

bbK̄ and Ξ∗
b B̄

respectively. Finally, in Table XXV we show the only state that we get for V B(32
+
), which couples to Ξ∗

bB̄
∗.

C. Poles and their coupling constants of Ωbc

We put the results for the threshold masses in Table III. In Tables XXVI - XXIX, we show the bound states and resonances of
Ωbc along with their coupling constants to various channels with qmax = 650 MeV.

TABLE XXVI: The poles for Ωbc along with their coupling constants (in units of MeV) to various channels in the JP = 1

2

−
sector from

PB( 1
2

+
).

Poles ΞbcK̄ Ξ′
bcK̄ Ωbcη Ω′

bcη ΞbD ΞcB̄ Ξ′
bD Ξ′

cB̄

7362.26
gi 2.64 0 1.57 0 1.70 0 0 0

giG
II
i −40.41 0 −13.52 0 −5.35 0 0 0

7392.60
gi 0 2.61 0 1.51 0 0 −0.73 0

giG
II
i 0 −41.08 0 −12.83 0 0 1.81 0

7514.32 + i2.21
gi −0.14− i0.27 0 −0.05− i0.13 0 6.19− i0.08 0 0 0

giG
II
i 9.18 + i2.42 0 0.83 + i2.04 0 −32.11+ i0.12 0 0 0

7566.65
gi 0 0 0 0 0 11.50 0 0

giG
II
i 0 0 0 0 0 −20.01 0 0

7641.20 + i2.26
gi 0 −0.06− i0.03 0 0.34 + i0.11 0 0 6.50+ i0.02 0

giG
II
i 0 1.60− i1.76 0 −10.29 + i2.74 0 0 −32.20− i0.41 0

7674.29
gi 0 0 0 0 0 0 0 11.53

giG
II
i 0 0 0 0 0 0 0 −20.05

TABLE XXVII: The poles for Ωbc along with their coupling constants (in units of MeV) to various channels in the JP = 1

2

−
, 3

2

−
sector from

V B( 1
2

+
).

Poles Ωbcω ΞcB̄
∗ ΞbD

∗ ΞbcK̄
∗ Ω′

bcω Ξ′
bcK̄

∗ Ξ′
cB̄

∗ Ξ′
bD

∗

7612.44
gi 0 11.56 0 0 0 0 0 0

giGII
i 0 −19.93 0 0 0 0 0 0

7627.73
gi 1.09 0 6.36 2.14 0 0 0 0

giG
II
i −9.13 0 −28.05 −15.65 0 0 0 0

7707.67
gi 1.19 0 −2.17 3.40 0 0 0 0

giGII
i −13.85 0 14.00 −33.94 0 0 0 0

7716.28
gi 0 0 0 0 1.43 4.03 0 −1.77

giG
II
i 0 0 0 0 −14.61 −37.19 0 6.54

7720.07
gi 0 0 0 0 0 0 11.59 0

giG
II
i 0 0 0 0 0 0 −19.97 0

7777.47
gi 0 0 0 0 0.78 0.38 0 6.50

giG
II
i 0 0 0 0 −11.04 −4.84 0 −30.09
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TABLE XXVIII: The poles for Ωbc along with their coupling constants (in units of MeV) to various channels in the JP = 3

2

−
sector from

PB( 3
2

+
).

Poles Ξ∗
bcK̄ Ω∗

bcη Ξ∗
bD Ξ∗

cB̄

7415.55
gi 2.63 1.56 1.21 0

giG
II
i −40.83 −13.37 −3.05 0

7667.65 + i1.40
gi −0.02 − i0.20 0.02 − i0.06 6.25− i0.05 0

giGII
i 6.82 + i0.98 0.53 + i1.88 −32.26+ i0.09 0

7740.93
gi 0 0 0 11.52

giG
II
i 0 0 0 −20.08

TABLE XXIX: The poles for Ωbc along with their coupling constants (in units of MeV) to various channels in the JP = 1

2

−
, 3

2

−
, 5

2

−
sector

from V B( 3
2

+
).

Poles Ω∗
bcω Ξ∗

bcK̄
∗ Ξ∗

bD
∗ Ξ∗

c B̄
∗

7729.11
gi 1.60 3.82 3.54 0

giG
II
i −15.96 −33.56 −12.92 0

7786.71
gi 0 0 0 11.61

giG
II
i 0 0 0 −19.99

7811.82
gi −0.23 −1.24 5.71 0

giG
II
i 3.72 16.77 −28.48 0

For the case of PB(12
+
) states, shown in Table XXVI, we find six states coupling mostly to ΞbcK̄, Ξ′

bcK̄, ΞbD, ΞcB̄, Ξ′
bD,

and Ξ′
cB̄, respectively. For the case of V B(12

+
) we find six states, shown in Table XXVII, coupling mostly to ΞcB̄∗, ΞbD∗,

ΞbcK̄∗, Ξ′
bcK̄

∗, Ξ′
cB̄

∗, and Ξ′
bD

∗, respectively.

For the case of PB(32
+
) with JP = 3

2

−
we show the states found in Table XXVIII. We obtain three states coupling mostly

to Ξ∗
bcK̄, Ξ∗

bD, and Ξ∗
cB̄, respectively. The widths are also small, all of them below 3 MeV. For the case of V B(32

+
) we obtain

three states of JP = 1
2

−
, 3
2

−
, 5
2

−
, shown in Table XXIX, coupling mostly to Ξ∗

bcK̄
∗, Ξ∗

cB̄
∗, and Ξ∗

bD
∗ respectively.

The widths obtained are small in all cases. In the cases of V B(12
+
), PB(32

+
), and V B(32

+
) there can be transitions to

the PB(12
+
) states, but we anticipated that these transitions are very suppressed and the widths should be smaller than those

found for transitions allowed by vector exchange within the blocks considered. For the case of PB(12
+
), the 4070 MeV state

that couples to ΞccK̄ cannot decay to any other state in our space, since it is bound in ΞccK̄ and this channel has the smallest
threshold. The state with 4205 MeV can only decay to ΞccK̄, so this should be the channel to observe it. The state at 4311 MeV
can decay to Ωccη and ΞccK̄. Given the couplings to the channels in Table XVIII, the favored channel for observation would be
Ωccη. Similar considerations can be done in the other sectors.

IV. CONCLUSION

We have done a thorough study of the molecular states of type Ωcc,Ωbb,Ωbc that stem from the interaction of meson baryon

coupled channels with these quantum numbers. We classify them as PB(12
+
), PB(32

+
), V B(12

+
), V B(32

+
), hence, channels

composed of a meson, pseudoscalar or vector, and a baryon in its ground state with either spin 1
2 or 3

2 . The interaction is
evaluated using an extension of the local hidden gauge approach and we only consider S-wave. Hence we obtain states carrying

JP = 1
2

−
, 3
2

−
, 5
2

−
. In the case of V B(12

+
) we have degenerate states in JP = 1

2

−
, 3
2

−
and in the case of V B(32

+
) we obtain

degenerate states with JP = 1
2

−
, 3
2

−
, 5
2

−
. We obtain states of each type for the three Ωcc,Ωbb,Ωbc sectors. We look for poles

of the scattering matrix in the second Riemann sheet and then evaluate the couplings of the states obtained to each channel.
Simultaneously, we also evaluate the wave function at the origin. In all the states observed we find one channel that has a much
bigger coupling and wave function at the origin than the other channels, which we identify as the main component of the wave
function of that state in terms of the coupled channels considered. Although in the case of coupled channels it is difficult to define
a binding, if we refer to the threshold of the main component, we find bindings of the order of 50-130 MeV. These bindings are

14

TABLE XXVIII: The poles for Ωbc along with their coupling constants (in units of MeV) to various channels in the JP = 3

2

−
sector from

PB( 3
2

+
).

Poles Ξ∗
bcK̄ Ω∗

bcη Ξ∗
bD Ξ∗

cB̄

7415.55
gi 2.63 1.56 1.21 0

giG
II
i −40.83 −13.37 −3.05 0

7667.65 + i1.40
gi −0.02 − i0.20 0.02 − i0.06 6.25− i0.05 0

giGII
i 6.82 + i0.98 0.53 + i1.88 −32.26+ i0.09 0

7740.93
gi 0 0 0 11.52

giG
II
i 0 0 0 −20.08

TABLE XXIX: The poles for Ωbc along with their coupling constants (in units of MeV) to various channels in the JP = 1

2

−
, 3

2

−
, 5

2

−
sector

from V B( 3
2

+
).

Poles Ω∗
bcω Ξ∗

bcK̄
∗ Ξ∗

bD
∗ Ξ∗

c B̄
∗

7729.11
gi 1.60 3.82 3.54 0

giG
II
i −15.96 −33.56 −12.92 0

7786.71
gi 0 0 0 11.61

giG
II
i 0 0 0 −19.99

7811.82
gi −0.23 −1.24 5.71 0

giG
II
i 3.72 16.77 −28.48 0

For the case of PB(12
+
) states, shown in Table XXVI, we find six states coupling mostly to ΞbcK̄, Ξ′

bcK̄, ΞbD, ΞcB̄, Ξ′
bD,

and Ξ′
cB̄, respectively. For the case of V B(12

+
) we find six states, shown in Table XXVII, coupling mostly to ΞcB̄∗, ΞbD∗,

ΞbcK̄∗, Ξ′
bcK̄

∗, Ξ′
cB̄

∗, and Ξ′
bD

∗, respectively.

For the case of PB(32
+
) with JP = 3

2

−
we show the states found in Table XXVIII. We obtain three states coupling mostly

to Ξ∗
bcK̄, Ξ∗

bD, and Ξ∗
cB̄, respectively. The widths are also small, all of them below 3 MeV. For the case of V B(32

+
) we obtain

three states of JP = 1
2

−
, 3
2

−
, 5
2

−
, shown in Table XXIX, coupling mostly to Ξ∗

bcK̄
∗, Ξ∗

cB̄
∗, and Ξ∗

bD
∗ respectively.

The widths obtained are small in all cases. In the cases of V B(12
+
), PB(32

+
), and V B(32

+
) there can be transitions to

the PB(12
+
) states, but we anticipated that these transitions are very suppressed and the widths should be smaller than those

found for transitions allowed by vector exchange within the blocks considered. For the case of PB(12
+
), the 4070 MeV state

that couples to ΞccK̄ cannot decay to any other state in our space, since it is bound in ΞccK̄ and this channel has the smallest
threshold. The state with 4205 MeV can only decay to ΞccK̄, so this should be the channel to observe it. The state at 4311 MeV
can decay to Ωccη and ΞccK̄. Given the couplings to the channels in Table XVIII, the favored channel for observation would be
Ωccη. Similar considerations can be done in the other sectors.

IV. CONCLUSION

We have done a thorough study of the molecular states of type Ωcc,Ωbb,Ωbc that stem from the interaction of meson baryon

coupled channels with these quantum numbers. We classify them as PB(12
+
), PB(32

+
), V B(12

+
), V B(32

+
), hence, channels

composed of a meson, pseudoscalar or vector, and a baryon in its ground state with either spin 1
2 or 3

2 . The interaction is
evaluated using an extension of the local hidden gauge approach and we only consider S-wave. Hence we obtain states carrying

JP = 1
2

−
, 3
2

−
, 5
2

−
. In the case of V B(12

+
) we have degenerate states in JP = 1

2

−
, 3
2

−
and in the case of V B(32

+
) we obtain

degenerate states with JP = 1
2

−
, 3
2

−
, 5
2

−
. We obtain states of each type for the three Ωcc,Ωbb,Ωbc sectors. We look for poles

of the scattering matrix in the second Riemann sheet and then evaluate the couplings of the states obtained to each channel.
Simultaneously, we also evaluate the wave function at the origin. In all the states observed we find one channel that has a much
bigger coupling and wave function at the origin than the other channels, which we identify as the main component of the wave
function of that state in terms of the coupled channels considered. Although in the case of coupled channels it is difficult to define
a binding, if we refer to the threshold of the main component, we find bindings of the order of 50-130 MeV. These bindings are
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Summary

1). With the inputs successfully used in Ω𝐜 and 𝐏𝐜, 𝐏𝐜𝐬 states, and using 
an extension of the local hidden gauge approach, we looked into the
interactions of meson-baryon channels leading to the states Ω𝐜𝐜, Ω𝐛𝐛
and Ω𝐛𝐜.

2). We found many bound states or resonances in each sector. And the 
Ω𝐛𝐜 sector is more rich, has more states. 

3). These states are presently under the investigation by the LHCb
collaboration.
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