Predictions on the molecular states $\Omega_{c c}, \Omega_{b b}$ and $\Omega_{b c}$

Wen-Fei Wang
IFIC, Universidad de Valencia
A. Feijoo IFIC, UV
With J. Song Beihang U.
E. Oset IFIC, UV

QNP2022
2022-09-06

Outline

$>$ Motivation for $\Omega_{c c}, \Omega_{b b}$ and $\Omega_{b c}$
> Formalism
$>$ Results and discussions
$>$ Summary

1) The discovery of new states with heavy quarks and the search for doubly heavy baryons on experimental side
2) The discovery of new states with heavy quarks and the search for doubly heavy baryons on experimental side

Hidden charm pentaquarks P_{c} and $P_{c S}$ from LHCb:
PRL 115, 072001 (2015); PRL 122, 222001 (2019);
PRL 128, 062001 (2022); Sci.Bull.66, 1278 (2021)
Doubly charmed tetraquark $T_{c c}$ from LHCb
Nat.Phys. 18, 751(2022)
Doubly heavy baryons $\Omega_{\boldsymbol{b} \boldsymbol{c}}$ and $\Xi_{\boldsymbol{b} \boldsymbol{c}}$ from LHCb
Chin.Phys.C 45, 093002 (2021)

1) The discovery of new states with heavy quarks and the search for doubly heavy baryons on experimental side

Hidden charm pentaquarks P_{c} and $P_{c S}$ from LHCb:
PRL 115, 072001 (2015); PRL 122, 222001 (2019);
PRL 128, 062001 (2022); Sci.Bull.66, 1278 (2021)
Doubly charmed tetraquark $T_{c c}$ from LHCb
Nat.Phys. 18, 751(2022)
Doubly heavy baryons $\Omega_{\boldsymbol{b} \boldsymbol{c}}$ and $\Xi_{\boldsymbol{b} \boldsymbol{c}}$ from LHCb
Chin.Phys.C 45, 093002 (2021)
2) The molecular Ω_{c} states

Five narrow excited Ω_{c} states from LHCb:
$\Omega_{c}(3000), \Omega_{c}(3050), \Omega_{c}(3066), \Omega_{c}(3090), \Omega_{c}(3119)$
PRL 118, 182001 (2017); PRD 97, 051102 (2018);
PRD 104, L091102 (2021)

1) The discovery of new states with heavy quarks and the search for doubly heavy baryons on experimental side
2) The molecular Ω_{c} states

Five narrow excited Ω_{c} states from LHCb:
$\Omega_{c}(3000), \Omega_{c}(3050), \Omega_{c}(3066), \Omega_{c}(3090), \Omega_{c}(3119)$
PRL 118, 182001 (2017); PRD 97, 051102 (2018); PRD 104, L091102 (2021)

PHYSICAL REVIEW D 104, L091102 (2021)		
$\Omega_{c}(3050)^{0}$	Significance	
	ΔM	$88.5 \pm 0.3 \pm 0.2 \mathrm{MeV}$
	m	$3050.1 \pm 0.3 \pm 0.2_{-0.22}^{+0.19} \mathrm{MeV}$
$\Omega_{c}(3090)^{0}$	Γ	$<1.6 \mathrm{MeV}, 95 \% \mathrm{CL}$
	\mathcal{P}	$0.15 \pm 0.02 \pm 0.02$
	Significance	7.8σ
	ΔM	$129.4 \pm 1.1 \pm 1.0 \mathrm{MeV}$
	m	$3091.0 \pm 1.1 \pm 1.0_{-0.22}^{+0.19} \mathrm{MeV}$
	Γ	$7.4 \pm 3.1 \pm 2.8 \mathrm{MeV}$
	\mathcal{P}	$0.19 \pm 0.02 \pm 0.04$

1) The discovery of new states with heavy quarks and the search for doubly heavy baryons on experimental side
2) The molecular Ω_{c} states

Five narrow excited Ω_{c} states from LHCb:

$$
\Omega_{c}(3000), \Omega_{c}(3050), \Omega_{c}(3066), \Omega_{c}(3090), \Omega_{c}(3119)
$$

Molecular $\boldsymbol{\Omega}_{\boldsymbol{c}}$ states generated from coupled meson-baryon channels

$$
\begin{gathered}
\text { V. R. Debastiani, }{ }^{1,{ }^{*}} \text { J. M. Dias, }{ }^{1,2, \dagger} \text { W. H. Liang, }{ }^{3, \ddagger} \text { and E. Oset }{ }^{1, \S} \\
{ }^{1} \text { Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia-CSIC, } \\
\text { Institutos de Investigación de Paterna, Aptdo. 22085, 46071 Valencia, Spain } \\
2^{2} \text { Instituto de Física, Universidade de São Paulo, } \\
\text { Rua do Matão, 1371, Butantã, São Paulo, São Paulo CEP 05508-090, Brazil } \\
{ }^{3} \text { Department of Physics, Guangxi Normal University, Guilin 541004, China }
\end{gathered}
$$

(1) (Received 13 February 2018; published 31 May 2018)

We have investigated Ω_{c} states that are dynamically generated from the meson-baryon interaction. We use an extension of the local hidden gance to ohtain the interaction from the exchange of vector mesons

1) The discovery of new states with heavy quarks and the search for doubly heavy baryons on experimental side
2) The molecular Ω_{c} states

Five narrow excited Ω_{c} states from LHCb:

$$
\Omega_{c}(3000), \Omega_{c}(3050), \Omega_{c}(3066), \Omega_{c}(3090), \Omega_{c}(3119)
$$

$\Omega_{c}(3050)$	MOLECULAR Ω_{c} STATES GENERATED FROM							
	TABLE VI. The coupling constants to various channels for the poles in the $J^{P}=1 / 2^{-}$sector, with $q_{\max }=650 \mathrm{MeV}$, and $g_{i} G_{i}^{I I}$ in MeV .							
	3054.05+i0.44	$\Xi_{c} \bar{K}$	$\Xi_{c}^{\prime} \bar{K}$	ΞD	$\Omega_{c} \eta$	ΞD^{*}	$\Xi_{c} \bar{K}^{*}$	$\Xi_{c}^{\prime} \bar{K}^{*}$
	g_{i} $g_{i} G_{i}^{I I}$	$\begin{aligned} & \hline-0.06+i 0.14 \\ & -1.40-i 3.85 \end{aligned}$	$\begin{array}{r} 1.94+i 0.01 \\ -34.41-i 0.30 \end{array}$	$\begin{array}{r} \hline-2.14+i 0.26 \\ 9.33-i 1.10 \end{array}$	$\begin{array}{r} 1.98+i 0.01 \\ -16.81-i 0.11 \end{array}$	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0
	3091.28+i5.12	$\Xi_{c} \bar{K}$	$\Xi_{c}^{\prime} \bar{K}$	ΞD	$\Omega_{c} \eta$	ΞD^{*}	$\Xi_{c} \bar{K}^{*}$	$\Xi_{c}^{\prime} \bar{K}^{*}$
	g_{i} $g_{i} G_{i}^{I I}$	$\begin{aligned} & 0.18-i 0.37 \\ & 5.05+i 10.19 \end{aligned}$	$\begin{array}{r} 0.31+i 0.25 \\ -9.97-i 3.67 \end{array}$	$\begin{array}{r} 5.83-i 0.20 \\ -29.82+i 0.31 \end{array}$	$\begin{array}{r} 0.38+i 0.23 \\ -3.59-i 2.23 \end{array}$	0	0	0

nnly show the results with the nsemincoalar-harvon inter-

1) The discovery of new states with heavy quarks and the search for doubly heavy baryons on experimental side
2) The molecular Ω_{c} states

$$
\Omega_{c} \Longrightarrow \Omega_{c c}, \Omega_{b b}, \Omega_{b c}
$$

Vector exchange from the extension to the heavy quark sector of the local hidden gauge approach

Formalism

Vector exchange from the extension to the heavy quark sector of the local hidden gauge approach

$$
\begin{aligned}
\mathcal{L}_{\mathrm{VPP}} & =-i g\left\langle\left[P, \partial_{\mu} P\right] V^{\mu}\right\rangle, \\
\mathcal{L}_{\mathrm{VVV}} & =i g\left\langle\left(V^{\mu} \partial_{\nu} V_{\mu}-\partial_{\nu} V^{\mu} V_{\mu}\right) V^{\nu}\right\rangle .
\end{aligned}
$$

PHYS. REV. D 97, 094035 (2018) $g=\frac{m_{V}}{2 f_{\pi}}$ with $m_{V}=800 \mathrm{MeV}$

Vector exchange from the extension to the heavy quark sector of the local hidden gauge approach

$$
\begin{aligned}
\mathcal{L}_{\mathrm{VPP}} & =-i g\left\langle\left[P, \partial_{\mu} P\right] V^{\mu}\right\rangle \\
\mathcal{L}_{\mathrm{VVV}} & =i g\left\langle\left(V^{\mu} \partial_{\nu} V_{\mu}-\partial_{\nu} V^{\mu} V_{\mu}\right) V^{\nu}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& P=\left(\begin{array}{cccc}
\frac{1}{\sqrt{2}} \pi^{0}+\frac{1}{\sqrt{3}} \eta+\frac{1}{\sqrt{6}} \eta^{\prime} & \pi^{+} & K^{+} & \bar{D}^{0} \\
\pi^{-} & -\frac{1}{\sqrt{2}} \pi^{0}+\frac{1}{\sqrt{3}} \eta+\frac{1}{\sqrt{6}} \eta^{\prime} & K^{0} & D^{-} \\
K^{-} & \bar{K}^{0} & -\frac{1}{\sqrt{3}} \eta+\sqrt{\frac{2}{3}} \eta^{\prime} & D_{s}^{-} \\
D^{0} & D^{+} & D_{s}^{+} & \eta_{c}
\end{array}\right), \\
& V=\left(\begin{array}{cccc}
\frac{1}{\sqrt{2}} \rho^{0}+\frac{1}{\sqrt{2}} \omega & \rho^{+} & K^{*+} & \bar{D}^{* 0} \\
\rho^{-} & -\frac{1}{\sqrt{2}} \rho^{0}+\frac{1}{\sqrt{2}} \omega & K^{* 0} & \bar{D}^{*-} \\
K^{*-} & & \bar{K}^{* 0} & \phi \\
D_{s}^{* 0} & D^{*+} & D_{s}^{*+} & J / \psi
\end{array}\right), \\
& P=\left(\begin{array}{cccc}
\frac{1}{\sqrt{2}} \pi^{0}+\frac{1}{\sqrt{3}} \eta+\frac{1}{\sqrt{6}} \eta^{\prime} & \pi^{+} & K^{+} & B^{+} \\
\pi^{-} & -\frac{1}{\sqrt{2}} \pi^{0}+\frac{1}{\sqrt{3}} \eta+\frac{1}{\sqrt{6}} \eta^{\prime} & K^{0} & B^{0} \\
K^{-} & \bar{K}^{0} & -\frac{1}{\sqrt{\sqrt{3}} \eta+\sqrt{\frac{2}{3}} \eta^{\prime}} B_{s}^{0} \\
B^{-} & \bar{B}^{0} & \bar{B}_{s}^{0} & \eta_{b}
\end{array}\right), \\
& V=\left(\begin{array}{cccc}
\frac{1}{\sqrt{2}} \rho^{0}+\frac{1}{\sqrt{2}} \omega & \rho^{+} & K^{*+} & B^{*+} \\
\rho^{-} & -\frac{1}{\sqrt{2}} \rho^{0}+\frac{1}{\sqrt{2}} \omega & K^{* 0} & B^{* 0} \\
K^{*-} & \bar{K}^{* 0} & \phi & B_{s}^{* 0} \\
B^{*-} & \bar{B}^{* 0} & \bar{B}_{s}^{* 0} & \Upsilon
\end{array}\right),
\end{aligned}
$$

For charm sector
For bottom sector

$$
\widetilde{\mathcal{L}}_{\mathrm{VBB}} \equiv g q \bar{q}(V),
$$

$q \bar{q}$ is the vector wave function in terms of quarks

$$
\widetilde{\mathcal{L}}_{V B B} \equiv g\left\{\begin{array}{cc}
\frac{1}{\sqrt{2}}(u \bar{u}-d \bar{d}), & \rho^{0} \\
\frac{1}{\sqrt{2}}(u \bar{u}+d \bar{d}), & \omega \\
s \bar{s}, & \phi
\end{array}\right.
$$

$$
\widetilde{\mathcal{L}}_{\mathrm{VBB}} \equiv g q \bar{q}(V),
$$

$q \bar{q}$ is the vector wave function in terms of quarks

$$
\widetilde{\mathcal{L}}_{V B B} \equiv g\left\{\begin{array}{cc}
\frac{1}{\sqrt{2}}(u \bar{u}-d \bar{d}), & \rho^{0} \\
\frac{1}{\sqrt{2}}(u \bar{u}+d \bar{d}), & \omega \\
s \bar{s}, & \phi
\end{array}\right.
$$

State	I, J	
$\Xi_{c c}^{++}$	$1 / 2,1 / 2$	$c c u$
$\Xi_{c c}^{+}$	$1 / 2,1 / 2$	$c c d$
$\Omega_{c c}^{+}$	$0,1 / 2$	$c c s$
Ξ_{c}^{+}	$1 / 2,1 / 2$	$\frac{1}{\sqrt{2}} c(u s-s u)$
Ξ_{c}^{0}	$1 / 2,1 / 2$	$\frac{1}{\sqrt{2}} c(d s-s d)$
$\Xi_{c}^{\prime+}$	$1 / 2,1 / 2$	$\frac{1}{\sqrt{2}} c(u s+s u)$
$\Xi_{c}^{\prime 0}$	$\frac{1}{\sqrt{2}} c(d s+s d)$	$\chi_{M S}(12)$
Ω_{c}^{0}	$1 / 2,1 / 2$	$\chi_{M S}(12)$
	$0,1 / 2$	$\chi_{M A}(23)$

$$
\widetilde{\mathcal{L}}_{\mathrm{VBB}} \equiv g q \bar{q}(V)
$$

$q \bar{q}$ is the vector wave function in terms of quarks

$$
\widetilde{\mathcal{L}}_{V B B} \equiv g\left\{\begin{array}{cc}
\frac{1}{\sqrt{2}}(u \bar{u}-d \bar{d}), & \rho^{0} \\
\frac{1}{\sqrt{2}}(u \bar{u}+d \bar{d}), & \omega \\
s \bar{s}, & \phi
\end{array}\right.
$$

Vector exchange from the extension to the heavy quark sector of the local hidden gauge approach

$$
V_{i j}=-\frac{1}{4 f_{\pi}^{2}}\left(p_{1}^{0}+p_{3}^{0}\right) C_{i j}
$$

$$
V_{i j}=-\frac{1}{4 f_{\pi}^{2}}\left(p_{1}^{0}+p_{3}^{0}\right) C_{i j},
$$

TABLE V: Coefficients $C_{i j}$ for the PB sector with $J^{P}=\frac{1}{2}^{-}$.

$\lambda \approx 0.25$ PHYS. REV. D 97, 094035 (2018)
$\lambda_{b} \approx m_{V}^{2} / m_{B^{*}}^{2}$
negligible

TABLE VI: Coefficients $C_{i j}$ for the VB sector with $J^{P}=\frac{1}{2}^{-}, \frac{3}{2}^{-}$.

	$\Xi_{c} D^{*}$	$\Omega_{c c} \omega$	$\Xi_{c c} \bar{K}^{*}$	$\Xi_{c}^{\prime} D^{*}$
$\Xi_{c} D^{*}$	2	$\frac{-\sqrt{3}}{2 \sqrt{2}} \lambda$	$\frac{-\sqrt{3}}{2 \sqrt{2}} \lambda$	0
$\Omega_{c c} \omega$		0	1	$\frac{-1}{2 \sqrt{2}} \lambda$
$\Xi_{c c} \bar{K}^{*}$			2	$\frac{1}{2 \sqrt{2}} \lambda$
$\Xi_{c}^{\prime} D^{*}$				2

$$
\begin{gathered}
V_{i j}=-\frac{1}{4 f_{n}^{(2}\left(p_{1}^{0}+p_{3}^{0}\right) C_{i j}} \\
\mathbb{\downarrow}
\end{gathered}
$$

BS equation

$$
T=[1-V G]^{-1} V
$$

$$
V_{i j}=-\frac{1}{4 f_{\pi}^{2}}\left(p_{1}^{0}+p_{3}^{0}\right) C_{i j},
$$

$$
\sqrt{ }
$$

BS equation

$$
T=[1-V G]^{-1} V
$$

G is the diagonal loop function for the meson baryon intermediate state

$$
V_{i j}=-\frac{1}{4 f_{\pi}^{2}}\left(p_{1}^{0}+p_{3}^{0}\right) C_{i j}
$$

$$
\sqrt{ }
$$

BS equation

$$
T=[1-V G]^{-1} V
$$

G is the diagonal loop function for the meson baryon intermediate state

$$
\begin{array}{r}
G_{j}^{I I}=G_{j}^{I}+i \frac{2 M_{j} q}{4 \pi \sqrt{s}}, \quad \operatorname{Re} \sqrt{s}>m_{j}+M_{j} \\
q=\frac{\lambda^{1 / 2}\left(s, m_{j}^{2}, M_{j}^{2}\right)}{2 \sqrt{s}},
\end{array}
$$

$$
V_{i j}=-\frac{1}{4 f_{\pi}^{2}}\left(p_{1}^{0}+p_{3}^{0}\right) C_{i j}
$$

$$
\sqrt{ }
$$

BS equation

$$
\begin{gathered}
T=[I-V G]-1 \square \\
T_{i j}=\frac{g_{i} g_{j}}{\sqrt{s}-z_{R}} \quad Z_{R}:(M, i \Gamma / 2) \quad \begin{array}{l}
G \text { is the diagonal loop function for the } \\
\text { meson baryon intermediate state }
\end{array} \\
\quad G_{j}^{I I}=G_{j}^{I}+i \frac{2 M_{j} q}{4 \pi \sqrt{s}}, \quad \begin{array}{l}
\operatorname{Re} \sqrt{s}>m_{j}+M_{j} \\
q=\frac{\lambda^{1 / 2}\left(s, m_{j}^{2}, M_{j}^{2}\right)}{2 \sqrt{s}},
\end{array}
\end{gathered}
$$

$$
V_{i j}=-\frac{1}{4 f_{\pi}^{2}}\left(p_{1}^{0}+p_{3}^{0}\right) C_{i j},
$$

$$
\sqrt{\square}
$$

BS equation

$$
\begin{aligned}
& T=[1-V G]^{-1} V \\
& \text { 】 } \\
& \text { F } \\
& G \text { is the diagonal loop function for the } \\
& \text { meson baryon intermediate state } \\
& T_{i j}=\frac{g_{i} g_{j}}{\sqrt{s}-z_{R}} \quad Z_{R}:(M, i \Gamma / 2) \\
& G_{j}^{I I}=G_{j}^{I}+i \frac{2 M_{j} q}{4 \pi \sqrt{s}}, \quad \operatorname{Re} \sqrt{s}>m_{j}+M_{j} \\
& g_{i} G_{i}^{I I} \\
& q=\frac{\lambda^{1 / 2}\left(s, m_{j}^{2}, M_{j}^{2}\right)}{2 \sqrt{s}},
\end{aligned}
$$

$\Omega_{c c}$

$$
J^{P}=\frac{1}{2}^{-} \text {sector from } P B\left(\frac{1}{2}^{+}\right)
$$

Poles		$\Xi_{c c} \bar{K}$	$\Omega_{c c} \eta$	$\Xi_{c} D$	$\Xi_{c}^{\prime} D$
4069.86	g_{i}	$\mathbf{2 . 6 3}$	1.55	-1.10	0.26
	$g_{i} G_{i}^{I I}$	$\mathbf{- 4 0 . 4 2}$	-13.26	3.59	-0.65
$4205.22+i 0.94$	g_{i}	$0.10+i 0.20$	$0.04+i 0.09$	$\mathbf{6 . 2 5 - i 0 . 0 4}$	$0.09+i 0.01$
	$g_{i} G_{i}^{I I}$	$-5.86-i 1.84$	$-0.57-i 1.32$	$\mathbf{- 3 1 . 7 9 + \boldsymbol { i 0 . 0 6 }}$	$-0.30-i 0.05$
$4310.76+i 0.28$	g_{i}	$0.02+i 0.01$	$-0.13-i 0.04$	$-0.02+i 0.00$	$\mathbf{6 . 3 5 + \boldsymbol { i 0 . 0 0 }}$
	$g_{i} G_{i}^{I I}$	$-0.45+i 0.64$	$3.47-i 0.96$	$0.23-i 0.01$	$\mathbf{- 3 1 . 9 5 - \boldsymbol { i 0 . 0 5 }}$

Note: We write in bold face for the most important channel.

$J^{P}=\frac{1}{2}^{-}, \frac{3}{2}^{-}$sector from $V B\left(\frac{1}{2}^{+}\right)$					
Poles		$\Xi_{c} D^{*}$	$\Omega_{c c} \omega$	$\Xi_{c c} \bar{K}^{*}$	$\Xi_{c}^{\prime} D^{*}$
4332.86	g_{i}	$\mathbf{6 . 5 1}$	-0.70	-1.35	-0.07
	$g_{i} G_{i}^{I I}$	$\mathbf{- 2 9 . 7 8}$	5.66	9.74	0.23
4405.47	g_{i}	1.27	1.41	$\mathbf{3 . 8 1}$	0.83
	$g_{i} G_{i}^{I I}$	-8.44	-15.17	$\mathbf{- 3 5 . 8 9}$	-3.33
4446.29	g_{i}	-0.08	-0.32	-0.24	$\mathbf{6 . 5 8}$
	$g_{i} G_{i}^{I I}$	0.73	4.34	2.81	$\mathbf{- 3 0 . 8 0}$

$\Omega_{c c}$

$$
J^{P}=\frac{1}{2}^{-} \text {sector from } P B\left(\frac{1}{2}^{+}\right)
$$

Poles		$\Xi_{c c} \bar{K}$	$\Omega_{c c} \eta$	$\Xi_{c} D$	$\Xi_{c}^{\prime} D$
4069.86	g_{i}	$\mathbf{2 . 6 3}$	1.55	-1.10	0.26
	$g_{i} G_{i}^{I I}$	$\mathbf{- 4 0 . 4 2}$	-13.26	3.59	-0.65
$4205.22+i 0.94$	g_{i}	$0.10+i 0.20$	$0.04+i 0.09$	$\mathbf{6 . 2 5 - i 0 . 0 4}$	$0.09+i 0.01$
	$g_{i} G_{i}^{I I}$	$-5.86-i 1.84$	$-0.57-i 1.32$	$\mathbf{- 3 1 . 7 9 + \boldsymbol { i 0 . 0 6 }}$	$-0.30-i 0.05$
$4310.76+i 0.28$	g_{i}	$0.02+i 0.01$	$-0.13-i 0.04$	$-0.02+i 0.00$	$\mathbf{6 . 3 5 + \boldsymbol { i 0 . 0 0 }}$
	$g_{i} G_{i}^{I I}$	$-0.45+i 0.64$	$3.47-i 0.96$	$0.23-i 0.01$	$\mathbf{- 3 1 . 9 5 - \boldsymbol { i 0 . 0 5 }}$

$\Xi_{c c} \bar{K}$	$\Omega_{c c} \eta$	$\Xi_{c} D$	$\Xi_{c}^{\prime} D$
4115	4263	4338	4448

$\Omega_{c c}$

$$
J^{P}=\frac{1}{2}^{-} \text {sector from } P B\left(\frac{1}{2}^{+}\right)
$$

Poles		$\Xi_{c c} \bar{K}$	$\Omega_{c c} \eta$	$\Xi_{c} D$	$\Xi_{c}^{\prime} D$
4069.86	g_{i}	$\mathbf{2 . 6 3}$	1.55	-1.10	0.26
	$g_{i} G_{i}^{I I}$	$\mathbf{- 4 0 . 4 2}$	-13.26	3.59	-0.65
$4205.22+i 0.94$	g_{i}	$0.10+i 0.20$	$0.04+i 0.09$	$\mathbf{6 . 2 5 - i 0 . 0 4}$	$0.09+i 0.01$
	$g_{i} G_{i}^{I I}$	$-5.86-i 1.84$	$-0.57-i 1.32$	$\mathbf{- 3 1 . 7 9 + \boldsymbol { i 0 . 0 6 }}$	$-0.30-i 0.05$
$4310.76+i 0.28$	g_{i}	$0.02+i 0.01$	$-0.13-i 0.04$	$-0.02+i 0.00$	$\mathbf{6 . 3 5 + \boldsymbol { i 0 . 0 0 }}$
	$g_{i} G_{i}^{I I}$	$-0.45+i 0.64$	$3.47-i 0.96$	$0.23-i 0.01$	$\mathbf{- 3 1 . 9 5 - \boldsymbol { i 0 . 0 5 }}$

PDG $m_{s} \approx 100 \mathrm{MeV}, m_{c} \approx 1270 \mathrm{MeV}$

PHYS. REV. D 97, 094035 (2018)

$\Omega_{c c}$

$$
J^{P}=\frac{1}{2}^{-} \text {sector from } P B\left(\frac{1}{2}^{+}\right)
$$

Poles		$\Xi_{c c} \bar{K}$	$\Omega_{c c} \eta$	$\Xi_{c} D$	$\Xi_{c}^{\prime} D$
4069.86	g_{i}	$\mathbf{2 . 6 3}$	1.55	-1.10	0.26
	$g_{i} G_{i}^{I I}$	$\mathbf{- 4 0 . 4 2}$	-13.26	3.59	-0.65
$4205.22+i 0.94$	g_{i}	$0.10+i 0.20$	$0.04+i 0.09$	$\mathbf{6 . 2 5 - i 0 . 0 4}$	$0.09+i 0.01$
	$g_{i} G_{i}^{I I}$	$-5.86-i 1.84$	$-0.57-i 1.32$	$\mathbf{- 3 1 . 7 9 + \boldsymbol { i 0 . 0 6 }}$	$-0.30-i 0.05$
$4310.76+i 0.28$	g_{i}	$0.02+i 0.01$	$-0.13-i 0.04$	$-0.02+i 0.00$	$\mathbf{6 . 3 5 + i 0 . 0 0}$
	$g_{i} G_{i}^{I I}$	$-0.45+i 0.64$	$3.47-i 0.96$	$0.23-i 0.01$	$\mathbf{- 3 1 . 9 5 - \boldsymbol { i 0 . 0 5 }}$

PDG $m_{s} \approx 100 \mathrm{MeV}, m_{c} \approx 1270 \mathrm{MeV}$
PHYS. REV. D 97, 094035 (2018)

$[3054.05+i 0.44$	$\Xi_{c} \bar{K}$	$\Xi_{c}^{\prime} \bar{K}$	ΞD	$\Omega_{c} \eta$
g_{i}	$-0.06+i 0.14$	$1.94+i 0.01$	$-2.14+10.26$	$1.98+i 0.01$
$g_{i} G_{i}^{I I}$	$-1.40-i 3.85$	-34.41-i0.30)	9.33-11.10	-16.81-i0.11
$\Omega_{\text {c }} 3091.28+i 5.12$	$\Xi_{c} \bar{K}$	$\Xi_{c}^{\prime} \bar{K}$	ΞD	$\Omega_{c} \eta$
$\underline{\underline{g_{i}}} \begin{aligned} & g_{i} G_{i}^{I I}\end{aligned}$	$0.18-i 0.37$ $5.05+i 10.19$	$0.31+i 0.25$ $-9.97-i 3.67$	$\binom{5.83-i 0.20}{-29.82+i 0.31}$	$\begin{array}{r} 0.38+i 0.23 \\ -3.59-i 2.23 \end{array}$

$$
J^{P}=\frac{3}{2}^{-} \text {sector from } P B\left(\frac{3}{2}^{+}\right)
$$

Poles		$\Xi_{c c}^{*} \bar{K}$	$\Omega_{c c}^{*} \eta$	$\Xi_{c}^{*} D$
4123.85	g_{i}	$\mathbf{2 . 6 2}$	1.55	0.84
	$g_{i} G_{i}^{I I}$	$-\mathbf{4 0 . 6 1}$	-13.14	-2.09
$4380.36+i 0.73$	g_{i}	$-0.01-i 0.15$	$0.02-i 0.05$	$\mathbf{6 . 2 8 - \boldsymbol { i 0 . 0 3 }}$
	$g_{i} G_{i}^{I I}$	$4.71+i 0.76$	$0.41+i 1.37$	$\mathbf{- 3 1 . 9 4 + \boldsymbol { i 0 . 0 5 }}$

$J^{P}=\frac{1}{2}, \frac{3}{2}^{-}, \frac{5^{-}}{2}$				sector from $\operatorname{VB}\left(\frac{3}{2}^{+}\right)$
Poles		$\Omega_{c c}^{*} \omega$	$\Xi_{c c}^{*} \bar{K}^{*}$	$\Xi_{c}^{*} D^{*}$
4446.59	g_{i}	1.59	$\mathbf{3 . 9 3}$	2.64
	$g_{i} G_{i}^{I I}$	-16.03	$\mathbf{- 3 5 . 3 1}$	-9.69
4520.38	g_{i}	-0.18	-0.94	$\mathbf{6 . 1 0}$
	$g_{i} G_{i}^{I I}$	2.78	12.44	$\mathbf{- 2 9 . 4 1}$

$\Omega_{b b}$

$J^{P}=\frac{1}{2}^{-}$sector from $P B\left(1_{2}{ }^{+}\right)$					
Poles		$\Omega_{b b} \eta$	$\Xi_{b b} \bar{K}$	$\Xi_{b} \bar{B}$	$\Xi_{b}^{\prime} \bar{B}$
10741.65	g_{i}	1.50	$\mathbf{2 . 7 2}$	0	0
	$g_{i} G_{i}^{I I}$	-25.56	$\mathbf{- 3 4 . 7 8}$	0	0
10864.15	g_{i}	0	0	$\mathbf{1 1 . 8 7}$	0
	$g_{i} G_{i}^{I I}$	0	0	$\mathbf{- 2 0 . 4 3}$	0
11001.63	g_{i}	0	0	0	$\mathbf{1 1 . 8 7}$
	$g_{i} G_{i}^{I I}$	0	0	0	$\mathbf{- 2 0 . 4 3}$

$J^{P}=\frac{1}{2}^{-}, \frac{3}{2}^{-}$sector from $\operatorname{VB}\left(\frac{1}{2}^{+}\right)$					
Poles		$\Omega_{b b} \omega$	$\Xi_{b} \bar{B}^{*}$	$\Xi_{b b} \bar{K}^{*}$	$\Xi_{b}^{\prime} \bar{B}^{*}$
10909.88	g_{i}	0	$\mathbf{1 1 . 9 2}$	0	0
	$g_{i} G_{i}^{I I}$	0	$\mathbf{- 2 0 . 3 5}$	0	0
11047.36	g_{i}	0	0	0	$\mathbf{1 1 . 9 2}$
	$g_{i} G_{i}^{I I}$	0	0	0	$\mathbf{- 2 0 . 3 4}$

$\Omega_{b b}$

$J^{P}=\frac{3^{-}}{2}$				
sector from $P B\left(\frac{3}{2}^{+}\right)$				
Poles		$\Omega_{b b}^{*} \eta$	$\Xi_{b b}^{*} \bar{K}$	$\Xi_{b}^{*} \bar{B}$
10770.91	g_{i}	1.50	$\mathbf{2 . 7 1}$	0
	$g_{i} G_{i}^{I I}$	-25.70	$\mathbf{- 3 4 . 6 2}$	0
11018.56	g_{i}	0	0	$\mathbf{1 1 . 8 7}$
	$g_{i} G_{i}^{I I}$	0	0	$\mathbf{- 2 0 . 4 3}$

$J^{P}=$				
	$\frac{1}{2}^{-}, \frac{3}{2}^{-}, \frac{5}{2}^{-}$	sector from $\operatorname{VB}\left(\frac{3}{2}^{+}\right)$		
Poles		$\Omega_{b b}^{*} \omega$	$\Xi_{b b}^{*} \bar{K}^{*}$	$\Xi_{b}^{*} \bar{B}^{*}$
11064.30	g_{i}	0	0	$\mathbf{1 1 . 9 4}$
	$g_{i} G_{i}^{I I}$	0	0	$\mathbf{- 2 0 . 3 7}$

$J^{P}=\frac{1}{2}^{-} \text {sector from } P B\left(\frac{1}{2}^{+}\right)$									
Poles		$\Xi_{b c} \bar{K}$	$\Xi_{b c}^{\prime} \bar{K}$	$\Omega_{b c} \eta$	$\Omega_{b c}^{\prime} \eta$	$\Xi_{b} D$	$\Xi_{c} \bar{B}$	$\Xi_{b}^{\prime} D$	$\Xi_{c}^{\prime} \bar{B}$
7362.26	g_{i}	2.64	0	1.57	0	1.70	0	0	0
	$g_{i} G_{i}^{I I}$	-40.41	0	-13.52	0	-5.35	0	0	0
7392.60	g_{i}	0	2.61	0	1.51	0	0	-0.73	0
	$g_{i} G_{i}^{I I}$	0	-41.08	0	-12.83	0	0	1.81	0
$7514.32+i 2.21$	g_{i}	$-0.14-i 0.27$	0	$-0.05-i 0.13$	0	6.19-i0.08	0	0	0
	$g_{i} G_{i}^{I I}$	$9.18+i 2.42$	0	$0.83+i 2.04$	0	$-32.11+i 0.12$	0	0	0
7566.65	g_{i}	0	0	0	0	0	11.50	0	0
	$g_{i} G_{i}^{I I}$	0	0	0	0	0	-20.01	0	0
$7641.20+i 2.26$	g_{i}	0	$-0.06-i 0.03$	0	$0.34+i 0.11$	0	0	$6.50+i 0.02$	0
	$g_{i} G_{i}^{I I}$	0	$1.60-i 1.76$	0	$-10.29+i 2.74$	0	0	$-32.20-i 0.41$	0
7674.29	g_{i}	0	0	0	0	0	0	0	11.53
	$g_{i} G_{i}^{I I}$	0	0	0	0	0	0	0	-20.05

Poles		$\Omega_{b c} \omega$	$\Xi_{c} \bar{B}^{*}$	$\Xi_{b} D^{*}$	$\Xi_{b c} \bar{K}^{*}$	$\Omega_{b c}^{\prime} \omega$	$\Xi_{b c}^{\prime} \bar{K}^{*}$	$\Xi_{c}^{\prime} \bar{B}^{*}$	$\Xi_{b}^{\prime} D^{*}$
7612.44	$\begin{aligned} & g_{i} \\ & g_{i} G_{i}^{I I} \\ & \hline \end{aligned}$	0	11.56	0	0	0	0	0	0
		0	-19.93	0	0	0	0	0	0
7627.73	$\begin{aligned} & g_{i} \\ & g_{i} G_{i}^{I I} \\ & \hline \end{aligned}$	1.09	0	6.36	2.14	0	0	0	0
		-9.13	0	-28.05	-15.65	0	0	0	0
7707.67	$\begin{aligned} & g_{i} \\ & g_{i} G_{i}^{I I} \end{aligned}$	1.19	0	-2.17	3.40	0	0	0	0
		-13.85	0	14.00	-33.94	0	0	0	0
7716.28	$\begin{aligned} & \hline g_{i} \\ & g_{i} G_{i}^{I I} \\ & \hline \end{aligned}$	0	0	0	0	1.43	4.03	0	-1.77
		0	0	0	0	-14.61	-37.19	0	6.54
7720.07	$\begin{aligned} & g_{i} \\ & g_{i} G_{i}^{I I} \\ & \hline \end{aligned}$	0	0	0	0	0	0	11.59	0
		0	0	0	0	0	0	-19.97	0
7777.47	$\begin{aligned} & g_{i} \\ & g_{i} G_{i}^{I I} \\ & \hline \end{aligned}$	0	0	0	0	0.78	0.38	0	6.50
		0	0	0	0	-11.04	-4.84	0	-30.09

$\Omega_{b c}$

$$
J^{P}=\frac{3}{2}^{-} \text {sector from } P B\left(\frac{3}{2}^{+}\right)
$$

Poles		$\Xi_{b c}^{*} \bar{K}$	$\Omega_{b c}^{*} \eta$	$\Xi_{b}^{*} D$	$\Xi_{c}^{*} \bar{B}$
7415.55	g_{i}	$\mathbf{2 . 6 3}$	1.56	1.21	0
	$g_{i} G_{i}^{I I}$	$-\mathbf{4 0 . 8 3}$	-13.37	-3.05	0
$7667.65+i 1.40$	g_{i}	$-0.02-i 0.20$	$0.02-i 0.06$	$\mathbf{6 . 2 5 - \boldsymbol { i 0 . 0 5 }}$	0
	$g_{i} G_{i}^{I I}$	$6.82+i 0.98$	$0.53+i 1.88$	$\mathbf{- 3 2 . 2 6 + \boldsymbol { i 0 . 0 9 }}$	0
7740.93	g_{i}	0	0	0	$\mathbf{1 1 . 5 2}$
	$g_{i} G_{i}^{I I}$	0	0	0	$\mathbf{- 2 0 . 0 8}$

$J^{P}=\frac{1^{-}}{2}, \frac{3^{-}}{2}, \frac{5^{-}}{2}$					
sector from $\operatorname{VB}\left(\frac{3^{+}}{2}\right)$					
Poles		$\Omega_{b c}^{*} \omega$	$\Xi_{b c}^{*} \bar{K}^{*}$	$\Xi_{b}^{*} D^{*}$	$\Xi_{c}^{*} \bar{B}^{*}$
7729.11	g_{i}	1.60	$\mathbf{3 . 8 2}$	3.54	0
	$g_{i} G_{i}^{I I}$	-15.96	$\mathbf{- 3 3 . 5 6}$	-12.92	0
7786.71	g_{i}	0	0	0	$\mathbf{1 1 . 6 1}$
	$g_{i} G_{i}^{I I}$	0	0	0	$\mathbf{- 1 9 . 9 9}$
7811.82	g_{i}	-0.23	-1.24	$\mathbf{5 . 7 1}$	0
	$g_{i} G_{i}^{I I}$	3.72	16.77	$\mathbf{- 2 8 . 4 8}$	0

1). With the inputs successfully used in Ω_{c} and $P_{c}, P_{c s}$ states, and using an extension of the local hidden gauge approach, we looked into the interactions of meson-baryon channels leading to the states $\Omega_{\mathbf{c c}}, \Omega_{\mathbf{b b}}$ and Ω_{bc}.
2). We found many bound states or resonances in each sector. And the Ω_{bc} sector is more rich, has more states.
3). These states are presently under the investigation by the LHCb collaboration.
1). With the inputs successfully used in Ω_{c} and $P_{c}, P_{c s}$ states, and using an extension of the local hidden gauge approach, we looked into the interactions of meson-baryon channels leading to the states $\Omega_{\mathbf{c c}}, \Omega_{\mathbf{b b}}$ and $\Omega_{b c}$.
2). We found many bound states or resonances in each sector. And the Ω_{bc} sector is more rich, has more states.
3). These states are presently under the investigation by the LHCb collaboration.

