Amplitude Analysis of $a_2 \rightarrow \eta \pi$ at GlueX _____QNP 2022

Colin Gleason

Union College on Behalf of the GlueX Collaboration

September 5, 2022

UNION COLLEGE

1/17

イロト イポト イヨト イヨト

September 5, 2022

Overview

1. The $\eta\pi$ System

- What we want to measure
- 2. The GlueX Experiment
 - Large acceptance detector
 - Polarized γ beam at 8.5 GeV
- 3. Amplitude Analysis of $\eta\pi$ at GlueX

•
$$\gamma p \rightarrow \eta \pi^0 p$$

- $\gamma p \rightarrow \eta \pi^- \Delta^{++}$
- 4. Outlook

э

< □ > < □ > < □ > < □ > < □ > < □ >

- The goal of GlueX is to map the spectrum of light hybrid mesons
- The $\eta^{(\prime)}\pi$ system is an ideal place to start
- For orbital angular momentum L = 0, 1, 2, 3, ... of the $\eta(')\pi$ system, we gain access to J^{PC}

$$\frac{L}{J^{PC}} \begin{array}{ccc} S & P & D & F & \dots \\ 1^{-+} & 2^{++} & 3^{-+} & \dots \end{array}$$

• $\eta\pi$ in a *P*-wave results in exotic quantum numbers (non $q\bar{q}$)

- The goal of GlueX is to map the spectrum of light hybrid mesons
- The $\eta^{(\prime)}\pi$ system is an ideal place to start
- For orbital angular momentum L = 0, 1, 2, 3, ... of the $\eta(')\pi$ system, we gain access to J^{PC}

$$\frac{L}{J^{PC}} \begin{array}{cccc} S & P & D & F & \dots \\ 1^{-+} & 2^{++} & 3^{-+} & \dots \end{array}$$

September 5, 2022

3/17

- $\eta\pi$ in a *P*-wave results in exotic quantum numbers (non $q\bar{q}$)
- Key questions:
 - 1. What is the nature and interpretation of the π_1 $(J^{PC} = 1^{-+})$?
 - 2. How are hybrid states produced?

- The goal of GlueX is to map the spectrum of light hybrid mesons
- The $\eta^{(\prime)}\pi$ system is an ideal place to start
- For orbital angular momentum L = 0, 1, 2, 3, ... of the $\eta(')\pi$ system, we gain access to J^{PC}

$$\frac{L}{J^{PC}} \begin{array}{cccc} S & P & D & F & \dots \\ 1^{-+} & 2^{++} & 3^{-+} & \dots \end{array}$$

- $\eta\pi$ in a *P*-wave results in exotic quantum numbers (non $q\bar{q}$)
- Key questions:
 - 1. What is the nature and interpretation of the π_1 $(J^{PC} = 1^{-+})$?
 - 2. How are hybrid states produced?
- Build foundation for hybrid searches by studying $\eta\pi$ system

September 5, 2022

3/17

• Focus of this talk is on $a_2(1320) \rightarrow \eta \pi$

The GlueX Experiment

э

イロト イヨト イヨト イヨト

The GlueX Experiment

- Linearly polarized photon beam
- Large acceptance for charged and neutral final state particles
- 120 pb⁻¹ data collected in GlueX Phase-1 ($E_{\gamma} = 8.2 8.8$ GeV)

э

イロト イヨト イヨト

$\eta^{(')}\pi$ Systems With GlueX

First stage: study known resonances (e.g. $a_0(980) \rightarrow \eta \pi$, $a_2(1320) \rightarrow \eta \pi$) to build the foundation for hybrid meson searches at GlueX.

- Access to multiple channels:
- 1. $\gamma p \rightarrow \eta \pi^0 p$
 - $\eta \to \gamma \gamma$ • $\eta \to \pi^+ \pi^- \pi^0$
- 2. $\gamma p \rightarrow \eta \pi^- \Delta^{++}$
 - $\eta \to \gamma \gamma$ • $\eta \to \pi^+ \pi^- \pi^0$
- 3. $\gamma p \rightarrow \eta' \pi^0 p$, $\eta' \rightarrow \pi^+ \pi^- \eta, \ \eta \rightarrow \gamma \gamma$
- 4. $\gamma p \rightarrow \eta' \pi^- \Delta^{++}$, $\eta' \rightarrow \pi^+ \pi^- \eta, \ \eta \rightarrow \gamma \gamma$

イロト 不得下 イヨト イヨト

$\eta^{(\prime)}\pi$ Systems With GlueX

First stage: study known resonances (e.g. $a_0(980) \rightarrow \eta \pi$, $a_2(1320) \rightarrow \eta \pi$) to build the foundation for hybrid meson searches at GlueX.

- Access to multiple channels:
- 1. $\gamma p \rightarrow \eta \pi^0 p$
 - $\eta \to \gamma \gamma$ • $\eta \to \pi^+ \pi^- \pi^0$
- 2. $\gamma p \rightarrow \eta \pi^- \Delta^{++}$
 - $\eta \to \gamma \gamma$ • $\eta \to \pi^+ \pi^- \pi^0$
- 3. $\gamma p \rightarrow \eta' \pi^0 p$, $\eta' \rightarrow \pi^+ \pi^- \eta, \ \eta \rightarrow \gamma \gamma$
- 4. $\gamma p \rightarrow \eta' \pi^- \Delta^{++}$, $\eta' \rightarrow \pi^+ \pi^- \eta, \ \eta \rightarrow \gamma \gamma$

- Different decay modes should contain same physics
 - \Rightarrow Understand Acceptance
 - \Rightarrow Handling of backgrounds
- Charged and neutral decays are complementary

6/17

 $\gamma p \rightarrow \eta \pi N$

 $0.1 < -t < 0.3 \text{ GeV}^2$

- Goal is to measure *a*₂ cross section as a function of *t*
- Mass distributions provide insight into how resonances and backgrounds evolve

 □
 •
 ≡
 •
 ≡
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •

 $\gamma p \rightarrow \eta \pi N$

 $0.1 < -t < 0.3 \text{ GeV}^2$

 $0.3 < -t < 0.6 \ {
m GeV}^2$

- Goal is to measure a₂ cross section as a function of t
- Mass distributions provide insight into how resonances and backgrounds evolve

Angular Distributions in $\eta\pi$

Gottfried-Jackson Frame

Angular Distributions in $\eta\pi$

Gottfried-Jackson Frame

• D_1 (L = 2, m = 1) structure at ≈ 1300 MeV in $\eta \pi^-$ system ($a_2(1320)$)

< A

• Similar to COMPASS D wave in $\eta\pi^-$

(PLB 740, 303 (2015))

< ⊒ >

Angular Distributions in $\eta\pi$

Gottfried-Jackson Frame

- D_2 (L = 2, m = 2) structure at \approx 1300 MeV in $\eta \pi^0$ system (a₂(1320))
- Belle: $\gamma \gamma \rightarrow \eta \pi^0$ sees a_2 produced in D_2 state (PRD 80, 032001 (2009))

Amplitude Analysis on $\gamma p \rightarrow \eta \pi N$ Polarized Amplitudes (PRD 100 (2019) 5, 054017)

- Introduce polarized photoproduction amplitudes to incorporate beam polarization
- System described by $\Omega = \theta, \phi$ (in GJ or Helicity frame) and Φ , the polarization angle

$$\begin{split} \mathsf{I}(\Omega,\Phi) &\propto (1-P_{\gamma}) \Big| \sum_{\ell} [\ell]_{m}^{(-)} \operatorname{Re}[Z_{\ell}^{m}(\Omega,\Phi)] \Big|^{2} + (1-P_{\gamma}) \Big| \sum_{\ell} [\ell]_{m}^{(+)} \operatorname{Im}[Z_{\ell}^{m}(\Omega,\Phi)] \Big|^{2} \\ &+ (1+P_{\gamma}) \Big| \sum_{\ell} [\ell]_{m}^{(+)} \operatorname{Re}[Z_{\ell}^{m}(\Omega,\Phi)] \Big|^{2} + (1+P_{\gamma}) \Big| \sum_{\ell} [\ell]_{m}^{(-)} \operatorname{Im}[Z_{\ell}^{m}(\Omega,\Phi)] \Big|^{2} \end{split}$$

- Basis: $Z_l^m(\Omega, \Phi) = Y_l^m(\Omega)e^{-i\Phi}$
- Fit $[\ell]_m^{\pm}$ coefficients to the data
 - ± corresponds to the naturality of exchange particle

•
$$m = -\ell, ..., \ell$$

Amplitude Analysis on $\gamma p \rightarrow \eta \pi N$ Polarized Amplitudes (PRD 100 (2019) 5, 054017)

- Introduce polarized photoproduction amplitudes to incorporate beam polarization
- System described by $\Omega=\theta,\phi$ (in GJ or Helicity frame) and $\Phi,$ the polarization angle

$$\begin{split} \mathsf{I}(\Omega,\Phi) &\propto (1-P_{\gamma}) \Big| \sum_{\ell} [\ell]_{m}^{(-)} \operatorname{Re}[Z_{\ell}^{m}(\Omega,\Phi)] \Big|^{2} + (1-P_{\gamma}) \Big| \sum_{\ell} [\ell]_{m}^{(+)} \operatorname{Im}[Z_{\ell}^{m}(\Omega,\Phi)] \Big|^{2} \\ &+ (1+P_{\gamma}) \Big| \sum_{\ell} [\ell]_{m}^{(+)} \operatorname{Re}[Z_{\ell}^{m}(\Omega,\Phi)] \Big|^{2} + (1+P_{\gamma}) \Big| \sum_{\ell} [\ell]_{m}^{(-)} \operatorname{Im}[Z_{\ell}^{m}(\Omega,\Phi)] \Big|^{2} \end{split}$$

Mass Independent Fit to $\gamma p \rightarrow \eta \pi^0 p$ $_{0.1< -t < 0.3 \text{ GeV}^2}$

- Dominant structure in $a_0(980)$ is the S_0^+ wave \checkmark
- Large S_0^+ under $a_2(1320)$
 - Leakage or acceptance effect?
 - Contribution from other resonance?

September 5, 2022

11/17

Mass Independent Fit to $\gamma p \rightarrow \eta \pi^0 p$ $_{0.1 < -t < 0.3 \text{ GeV}^2}$

- Dominant structure in $a_0(980)$ is the S_0^+ wave \checkmark
- Large S_0^+ under $a_2(1320)$
 - Leakage or acceptance effect?
 - Contribution from other resonance?
- D_2^+ is the dominant *D* wave in the $a_2(1320)$ region at low $-t \checkmark$
- Similar intensities of S_0^+ and D_2^+ ?

Mass Independent Fit to $\gamma p \rightarrow \eta \pi^0 p$ $_{0.1< -t < 0.3 \text{ GeV}^2}$

- Dominant structure in $a_0(980)$ is the S_0^+ wave \checkmark
- Large S_0^+ under $a_2(1320)$
 - Leakage or acceptance effect?
 - Contribution from other resonance?
- D_2^+ is the dominant *D* wave in the $a_2(1320)$ region at low $-t \checkmark$
- Similar intensities of S_0^+ and D_2^+ ?
- Working on identifying $a_2(1700)$
 - Will need to identify correct waves and confirm phase motion for hybrid search

Mass Independent Fit to $\gamma p \rightarrow \eta \pi^0 p$ 0.1< $-t < 0.3 \text{ GeV}^2$

- Dominant structure in $a_0(980)$ is the S_0^+ wave \checkmark
- Large S_0^+ under $a_2(1320)$
 - Leakage or acceptance effect?
 - Contribution from other resonance?
- D_2^+ is the dominant *D* wave in the $a_2(1320)$ region at low $-t \checkmark$
- Similar intensities of S_0^+ and D_2^+ ?
- Working on identifying $a_2(1700)$
 - Will need to identify correct waves and confirm phase motion for hybrid search
- How does *D* wave evolve as a function of -t?

Model Semi-Independent Fit Approach

- Our goal is to try to extract *t*-dependent cross section of $a_2
 ightarrow \eta \pi$
- Initial strategy: mass independent fits to extract intensities, phase difference
 - Model independent, but challenges arise in waveset choice, ambiguities, leakage, etc.
- New approach: "Model Semi-Independent" fit
 - The $a_2(1320)$ is isolated, so we can limit the fit to the relevant mass range
 - Model a₂(1320) with a relativistic Breit Wigner
 - Phase-motion of D-wave (BW) serves as anchor-point in these fits, may eliminate ambiguities

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

September 5, 2022

12/17

• S_0 wave is fit on a bin by bin basis

$a_2(1320) \rightarrow \eta \pi^0$ Model Semi-Independent Fit

"mass-independent" S-wave

$a_2(1320) \rightarrow \eta \pi^0$ Cross Section

- Good agreement between theory and data
- Systematic studies underway
- Inclusion of a2(1700) has significant impact on extracted cross section

Mass Independent Fits for $\gamma p \rightarrow \eta \pi^- \Delta^{++}$

- Dominant structure in $a_0^-(980)$ is the S_0^- wave \checkmark
- Some S_0^+ under $a_2(1320)$

Mass Independent Fits for $\gamma p \rightarrow \eta \pi^- \Delta^{++}$

- Dominant structure in $a_0^-(980)$ is the S_0^- wave \checkmark
- Some S_0^+ under $a_2(1320)$
- $a_2^-(1320)$ should be dominated by D_1^-

Mass Independent Fits for $\gamma p \rightarrow \eta \pi^- \Delta^{++}$

- Dominant structure in $a_0^-(980)$ is the S_0^- wave \checkmark
- Some S_0^+ under $a_2(1320)$
- $a_2^-(1320)$ should be dominated by D_1^-

- Dominant structure is $D_1^- \checkmark$
 - unnatural (π) parity exchange expected to dominate at low -t
- D_0^- also has a large contribution
- Tail in D_1^- wave related to $a_2(1700)$?
- Progress being made on hybrid fits and cross sections in the channel

< ロ > < 同 > < 回 > < 回 > < 回 > <

Comparison of the Neutral and Charged Channels

 $a_2(1320)
ightarrow \eta \pi^0$

- Dominated by natural parity (ρ, ω) exchange at low t
- *m* = 2 wave has the largest contribution

< ロ > < 同 > < 回 > < 回 > < 回 > <

Comparison of the Neutral and Charged Channels

 $a_2(1320) \rightarrow \eta \pi^0$

- Dominated by natural parity (ρ, ω) exchange at low t
- *m* = 2 wave has the largest contribution

 $a_2(1320)
ightarrow \eta \pi^-$

Dominated by unnatural parity
 (π) exchange at low t

< □ > < 同 > < 回 > < 回 > < 回 >

• *m* = 1 wave has the largest contribution

Comparison of the Neutral and Charged Channels

 $a_2(1320) \rightarrow \eta \pi^0$

- Dominated by natural parity (ρ, ω) exchange at low t
- *m* = 2 wave has the largest contribution

 $a_2(1320)
ightarrow \eta \pi^-$

• Dominated by unnatural parity (π) exchange at low t

・ロト ・ 同ト ・ ヨト ・ ヨト

September 5, 2022

16/17

• *m* = 1 wave has the largest contribution

- Both channels have the D wave structure evolving with t
- Targeting $a_2(1320)$ production for a near term publication
- Laying the foundation for hybrid meson (*P* wave) searches at GlueX

Outlook

- Large, high-quality data set with access to multiple $\eta\pi$ channels
- Focusing on understanding *a*₂ production before moving onto weaker *P* wave
- Preliminary results are consistent with π , η production at low t
- Critical for us to understand $a_2(1700)$, phase motion, and alternative processes
- Close relationship with theorists (JPAC) on interpretation of results

イロト 不得 トイヨト イヨト 二日

Outlook

- Large, high-quality data set with access to multiple $\eta\pi$ channels
- Focusing on understanding *a*₂ production before moving onto weaker *P* wave
- Preliminary results are consistent with π , η production at low t
- Critical for us to understand $a_2(1700)$, phase motion, and alternative processes
- Close relationship with theorists (JPAC) on interpretation of results
- Building the foundation for hybrid searches in $\eta^{(\prime)}\pi$
- GlueX Acknowledgments: gluex.org/thanks

17/17

イロト 不得下 イヨト イヨト 二日

September 5, 2022