Amplitude Analysis of $a_2 \rightarrow \eta \pi$ at GlueX
QNP 2022

Colin Gleason
Union College
on Behalf of the GlueX Collaboration

September 5, 2022
Overview

1. The $\eta\pi$ System
 - What we want to measure

2. The GlueX Experiment
 - Large acceptance detector
 - Polarized γ beam at 8.5 GeV

3. Amplitude Analysis of $\eta\pi$ at GlueX
 - $\gamma p \rightarrow \eta\pi^0 p$
 - $\gamma p \rightarrow \eta\pi^- \Delta^{++}$

4. Outlook
• The goal of GlueX is to map the spectrum of light hybrid mesons
• The $\eta(\prime)\pi$ system is an ideal place to start
• For orbital angular momentum $L = 0, 1, 2, 3, \ldots$ of the $\eta(\prime)\pi$ system, we gain access to J^{PC}

<table>
<thead>
<tr>
<th>L</th>
<th>S</th>
<th>P</th>
<th>D</th>
<th>F</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>J^{PC}</td>
<td>0++</td>
<td>1−+</td>
<td>2++</td>
<td>3−+</td>
<td>...</td>
</tr>
</tbody>
</table>

• $\eta\pi$ in a P–wave results in exotic quantum numbers (non $q\bar{q}$)
The goal of GlueX is to map the spectrum of light hybrid mesons

The $\eta^{(')}\pi$ system is an ideal place to start

For orbital angular momentum $L = 0, 1, 2, 3, \ldots$ of the $\eta^{(')}\pi$ system, we gain access to J^{PC}

<table>
<thead>
<tr>
<th>L</th>
<th>S</th>
<th>P</th>
<th>D</th>
<th>F</th>
<th>F</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>J^{PC}</td>
<td>0$^{++}$</td>
<td>1$^{-+}$</td>
<td>2$^{++}$</td>
<td>3$^{--}$</td>
<td>\ldots</td>
<td></td>
</tr>
</tbody>
</table>

$\eta\pi$ in a P–wave results in exotic quantum numbers (non $q\bar{q}$)

Key questions:

1. What is the nature and interpretation of the π_1 ($J^{PC} = 1^{-+}$)?
2. How are hybrid states produced?
• The goal of GlueX is to map the spectrum of light hybrid mesons
• The $\eta^{(')}\pi$ system is an ideal place to start
• For orbital angular momentum $L = 0, 1, 2, 3, ..$ of the $\eta^{(')}\pi$ system, we gain access to J^{PC}

\[
\begin{array}{cccccc}
L & S & P & D & F & \\
J^{PC} & 0^{++} & 1^{--} & 2^{++} & 3^{--} & ...
\end{array}
\]

• $\eta\pi$ in a P–wave results in exotic quantum numbers (non $q\bar{q}$)

• Key questions:
 1. What is the nature and interpretation of the π_1 ($J^{PC} = 1^{--}$)?
 2. How are hybrid states produced?

• Build foundation for hybrid searches by studying $\eta\pi$ system
• Focus of this talk is on $a_2(1320) \rightarrow \eta\pi$
The GlueX Experiment

- Linearly polarized photon beam
- Large acceptance for charged and neutral final state particles
- 120 pb$^{-1}$ data collected in GlueX Phase–1 ($E_\gamma = 8.2 - 8.8$ GeV)
First stage: study known resonances (e.g. $a_0(980) \to \eta\pi$, $a_2(1320) \to \eta\pi$) to build the foundation for hybrid meson searches at GlueX.

- Access to multiple channels:
 1. $\gamma p \to \eta\pi^0 p$
 - $\eta \to \gamma\gamma$
 - $\eta \to \pi^+\pi^-\pi^0$
 2. $\gamma p \to \eta\pi^-\Delta^{++}$
 - $\eta \to \gamma\gamma$
 - $\eta \to \pi^+\pi^-\pi^0$
 3. $\gamma p \to \eta'\pi^0 p$,
 $\eta' \to \pi^+\pi^-\eta$, $\eta \to \gamma\gamma$
 4. $\gamma p \to \eta'\pi^-\Delta^{++}$,
 $\eta' \to \pi^+\pi^-\eta$, $\eta \to \gamma\gamma$
First stage: study known resonances (e.g. $a_0(980) \rightarrow \eta\pi$, $a_2(1320) \rightarrow \eta\pi$) to build the foundation for hybrid meson searches at GlueX.

• Access to multiple channels:

1. $\gamma p \rightarrow \eta\pi^0 p$
 • $\eta \rightarrow \gamma\gamma$
 • $\eta \rightarrow \pi^+\pi^-\pi^0$

2. $\gamma p \rightarrow \eta\pi^-\Delta^{++}$
 • $\eta \rightarrow \gamma\gamma$
 • $\eta \rightarrow \pi^+\pi^-\pi^0$

3. $\gamma p \rightarrow \eta'\pi^0 p$, $\eta' \rightarrow \pi^+\pi^-\eta$, $\eta \rightarrow \gamma\gamma$

4. $\gamma p \rightarrow \eta'\pi^-\Delta^{++}$, $\eta' \rightarrow \pi^+\pi^-\eta$, $\eta \rightarrow \gamma\gamma$

• Different decay modes should contain same physics
 ⇒ Understand Acceptance
 ⇒ Handling of backgrounds

• Charged and neutral decays are complementary
\(\gamma p \rightarrow \eta \pi N \)

- Goal is to measure \(a_2 \) cross section as a function of \(t \)
- Mass distributions provide insight into how resonances and backgrounds evolve

\[0.1 < -t < 0.3 \text{ GeV}^2 \]
\[\gamma p \rightarrow \eta \pi N \]

- Goal is to measure \(a_2 \) cross section as a function of \(t \)
- Mass distributions provide insight into how resonances and backgrounds evolve
Angular Distributions in $\eta\pi$

Gottfried-Jackson Frame

![Graph showing angular distributions in $\eta\pi$]

Rest Frame of X where $X \rightarrow \eta\pi$

where $X \rightarrow \eta\pi$

$\vec{p}_{\gamma_i}^{\prime \text{com}} = z_{GJ}$
Angular Distributions in $\eta\pi$

Gottfried-Jackson Frame

- D_1 ($L = 2$, $m = 1$) structure at ≈ 1300 MeV in $\eta\pi^-$ system ($a_2(1320)$)
- Similar to COMPASS D wave in $\eta\pi^-$

(PLB 740, 303 (2015))
Angular Distributions in $\eta\pi$

Gottfried-Jackson Frame

Rest Frame of X
where $X \rightarrow \eta\pi$

- D_2 ($L = 2, m = 2$) structure at ≈ 1300 MeV in $\eta\pi^0$ system ($a_2(1320)$)
- Belle: $\gamma\gamma \rightarrow \eta\pi^0$ sees a_2 produced in D_2 state (PRD 80, 032001 (2009))
Amplitude Analysis on $\gamma p \rightarrow \eta \pi N$

Polarized Amplitudes (PRD 100 (2019) 5, 054017)

- Introduce polarized photoproduction amplitudes to incorporate beam polarization
- System described by $\Omega = \theta, \phi$ (in GJ or Helicity frame) and Φ, the polarization angle

$$I(\Omega, \Phi) \propto (1 - P_\gamma) \sum_{\ell} |[\ell]_m^{(-)} \text{Re}[Z_{\ell}^m(\Omega, \Phi)]|^2 + (1 - P_\gamma) \sum_{\ell} |[\ell]_m^{(+) \text{Im}}[Z_{\ell}^m(\Omega, \Phi)]|^2$$

$$+ (1 + P_\gamma) \sum_{\ell} |[\ell]_m^{(+)} \text{Re}[Z_{\ell}^m(\Omega, \Phi)]|^2 + (1 + P_\gamma) \sum_{\ell} |[\ell]_m^{(-)} \text{Im}[Z_{\ell}^m(\Omega, \Phi)]|^2$$

- Basis: $Z_{\ell}^m(\Omega, \Phi) = Y_{\ell}^m(\Omega)e^{-i\Phi}$
- Fit $[\ell]_m^\pm$ coefficients to the data
 - \pm corresponds to the naturality of exchange particle
 - $m = -\ell, \ldots, \ell$
Introduce polarized photoproduction amplitudes to incorporate beam polarization

- System described by $\Omega = \theta, \phi$ (in GJ or Helicity frame) and Φ, the polarization angle

\[
I(\Omega, \Phi) \propto (1 - P_\gamma) \left| \sum_\ell [\ell]^{(-)}_m \text{Re}[Z^m_\ell(\Omega, \Phi)] \right|^2 + (1 - P_\gamma) \left| \sum_\ell [\ell]^{(+)}_m \text{Im}[Z^m_\ell(\Omega, \Phi)] \right|^2 \\
+ (1+P_\gamma) \left| \sum_\ell [\ell]^{(+)}_m \text{Re}[Z^m_\ell(\Omega, \Phi)] \right|^2 + (1 + P_\gamma) \left| \sum_\ell [\ell]^{(-)}_m \text{Im}[Z^m_\ell(\Omega, \Phi)] \right|^2
\]

- Basis: $Z^m_\ell(\Omega, \Phi) = Y^m_\ell(\Omega) e^{-i\Phi}$

- Fit $[\ell]^{\pm}_m$ coefficients to the data
 - \pm corresponds to the naturality of exchange particle
 - $m = -\ell, \ldots, \ell$

- Starting waveset $(S^{\pm}_0, D^{\pm}_{-1,0,1}, D^{+}_2)$ set chosen from tensor meson decay model from JPAC (PRD 102 (2020))
Mass Independent Fit to $\gamma p \rightarrow \eta\pi^0 p$

$0.1 < -t < 0.3$ GeV2

- Dominant structure in $a_0(980)$ is the S^+_0 wave ✓
- Large S^+_0 under $a_2(1320)$
 - Leakage or acceptance effect?
 - Contribution from other resonance?
Mass Independent Fit to $\gamma p \rightarrow \eta \pi^0 p$

$0.1 < -t < 0.3 \text{ GeV}^2$

- Dominant structure in $a_0(980)$ is the S_0^+ wave √

- Large S_0^+ under $a_2(1320)$
 - Leakage or acceptance effect?
 - Contribution from other resonance?

- D_2^+ is the dominant D wave in the $a_2(1320)$ region at low $-t$ √

- Similar intensities of S_0^+ and D_2^+?
Mass Independent Fit to $\gamma p \rightarrow \eta\pi^0 p$

$0.1 < -t < 0.3 \text{ GeV}^2$

- Dominant structure in $a_0(980)$ is the S_0^+ wave ✓
- Large S_0^+ under $a_2(1320)$
 - Leakage or acceptance effect?
 - Contribution from other resonance?
- D_2^+ is the dominant D wave in the $a_2(1320)$ region at low $-t$ ✓
- Similar intensities of S_0^+ and D_2^+?
- Working on identifying $a_2(1700)$
 - Will need to identify correct waves and confirm phase motion for hybrid search
Mass Independent Fit to $\gamma p \rightarrow \eta\pi^0 p$

$0.1 < -t < 0.3$ GeV2

- Dominant structure in $a_0(980)$ is the S_0^+ wave ✓
- Large S_0^+ under $a_2(1320)$
 - Leakage or acceptance effect?
 - Contribution from other resonance?
- D_2^+ is the dominant D wave in the $a_2(1320)$ region at low $-t$ ✓
- Similar intensities of S_0^+ and D_2^+?
- Working on identifying $a_2(1700)$
 - Will need to identify correct waves and confirm phase motion for hybrid search
- How does D wave evolve as a function of $-t$?
Our goal is to try to extract \(t \)-dependent cross section of \(a_2 \rightarrow \eta \pi \).

Initial strategy: mass independent fits to extract intensities, phase difference

- Model independent, but challenges arise in waveset choice, ambiguities, leakage, etc.

New approach: “Model Semi-Independent” fit

- The \(a_2(1320) \) is isolated, so we can limit the fit to the relevant mass range
- Model \(a_2(1320) \) with a relativistic Breit Wigner
- Phase-motion of D-wave (BW) serves as anchor-point in these fits, may eliminate ambiguities
- \(S_0 \) wave is fit on a bin by bin basis
$a_2(1320) \rightarrow \eta \pi^0$ Model Semi-Independent Fit

“mass-independent” S-wave

$M(\eta \pi)$ [GeV/c^2]

S_0

$a_2(1320)$

Theory (JPAC)

$\Gamma_B(1320)$: Breit-Wigner
$a_2(1320) \rightarrow \eta\pi^0$ Cross Section

- Good agreement between theory and data
- Systematic studies underway
- Inclusion of $a_2(1700)$ has significant impact on extracted cross section
Mass Independent Fits for $\gamma p \rightarrow \eta\pi^-\Delta^{++}$

- Dominant structure in $a_0^-(980)$ is the S_0^- wave ✓
- Some S_0^+ under $a_2(1320)$
• Dominant structure in $a_0^-(980)$ is the S_0^- wave ✓
• Some S_0^+ under $a_2(1320)$
• $a_2^-(1320)$ should be dominated by D_1^-
Mass Independent Fits for $\gamma p \rightarrow \eta\pi^- \Delta^{++}$

- Dominant structure in $a_0^-(980)$ is the S_0^- wave ✓
- Some S_0^+ under $a_2(1320)$
- $a_2^-(1320)$ should be dominated by D_1^-

- Dominant structure is D_1^- ✓
 - unnatural (π) parity exchange expected to dominate at low $-t$
- D_0^- also has a large contribution
- Tail in D_1^- wave related to $a_2(1700)$?
- Progress being made on hybrid fits and cross sections in the channel
Comparison of the Neutral and Charged Channels

\[a_2(1320) \rightarrow \eta \pi^0 \]

- Dominated by natural parity \((\rho, \omega)\) exchange at low \(t\)
- \(m = 2\) wave has the largest contribution
Comparison of the Neutral and Charged Channels

\(a_2(1320) \rightarrow \eta \pi^0 \)

- Dominated by natural parity \((\rho, \omega)\) exchange at low \(t\)
- \(m = 2\) wave has the largest contribution

\(a_2(1320) \rightarrow \eta \pi^- \)

- Dominated by unnatural parity \((\pi)\) exchange at low \(t\)
- \(m = 1\) wave has the largest contribution
Comparison of the Neutral and Charged Channels

\[a_2(1320) \rightarrow \eta\pi^0 \]
- Dominated by natural parity \((\rho, \omega)\) exchange at low \(t\)
- \(m = 2\) wave has the largest contribution

\[a_2(1320) \rightarrow \eta\pi^- \]
- Dominated by unnatural parity \((\pi)\) exchange at low \(t\)
- \(m = 1\) wave has the largest contribution

- Both channels have the \(D\) wave structure evolving with \(t\)
- Targeting \(a_2(1320)\) production for a near term publication
- Laying the foundation for hybrid meson \((P\) wave\) searches at GlueX
Outlook

- Large, high-quality data set with access to multiple $\eta\pi$ channels
- Focusing on understanding a_2 production before moving onto weaker P wave
- Preliminary results are consistent with π, η production at low t
- Critical for us to understand $a_2(1700)$, phase motion, and alternative processes
- Close relationship with theorists (JPAC) on interpretation of results
Outlook

• Large, high-quality data set with access to multiple $\eta\pi$ channels
• Focusing on understanding a_2 production before moving onto weaker P wave
• Preliminary results are consistent with π, η production at low t
• Critical for us to understand $a_2(1700)$, phase motion, and alternative processes
• Close relationship with theorists (JPAC) on interpretation of results
• Building the foundation for hybrid searches in $\eta^{(')}\pi$

• GlueX Acknowledgments: gluex.org/thanks