Functional Renormalization Group study of chiral phase transition at high density beyond the Local Potential Approximation

> Speaker Fumio Terazaki Collaborator Katsuhiko Suzuki

> > Tokyo University of Science

September 5, 2022 QNP 2022 #46

QCD phase diagram

describes phase structure of matter following the QCD dynamics.

We apply the Functional Renormalization Group to an effective model to take quantum fluctuations into account properly.

previous studies

- Functional Renormalization Group Equation C. Wetterich ,Phys.Lett B 301 (1993)
- FRG analyses at μ ≠ 0 and T ≠ 0 in the simplest approximation, "Local Potential Approximation"
 B. -J. Schaefer and J. Wambach, Nucl. Phys. A. 757. (2005) 479-492
 H. Zuang, D. Hou, T. Kojo and B. Qin, Phys. Rev. D 96. 114029 (2017), LPA+ω-meson
- FRG analyses at $\mu = 0$ and $T \neq 0$ beyond the LPA

J. Braun, Phys. Rev. D 81.016008 (2010)

A. J. Helmboldt, J. M. Pawlowski and N. Strodthoff, Phys. Rev. D 91.054010 (2015)

- FRG analyses at $\mu \neq 0$ and high T beyond the LPA
- J. M. Pawlowski et al. , Phys. Rev. D 90.076002 (2014)
- F. Rennecke et al. , Phys. Rev. D 96.016009 (2017)

We focus on the phase structure at $\mu \neq 0$ and zero T beyond the LPA.

Results for chiral phase transitions in the 2-flavor Quark Meson model at $\mu \neq 0$ and T = 0

• FRG in the LPA

B.-J. Schaefer and J. Wambach, Phys. Rev. D 75 (2007) 085015. L. Brandes, N. Kaiser and W. Weise, Eur. Phys. J. A (2021) 57:243

Mean Field Approximation

O. Scavenius, A. Mocsy, I.N. Mishustin, D.H. Rischke, Phys. Rev. C 64 (2001) 045202.

If we consider quantum fluctuations more properly than in the LPA, how does this change ? **Does this 1st phase transition remain**?

Quark Meson model and FRG

The 2-flavor Quark Meson model

$$q = (u, d)$$
: quark field $\phi^a = (\vec{\pi}, \sigma)$: meson field
 $(\phi^2 = \vec{\pi}^2 + \sigma^2 \dots$ chiral invariant)

$$\mathcal{L} = \bar{q} \left[i\gamma^{\mu} \partial_{\mu} - g(\sigma + i\gamma_{5}\vec{\tau} \cdot \vec{\pi}) \right] q + \frac{1}{2} (\partial_{\mu}\phi)^{2} - U(\phi^{2}) + c\sigma$$

 $\langle \sigma \rangle$: order parameter for SU(2) chiral symmetry

FRG allows to get $\langle \sigma \rangle$ including effect of quantum fluctuations.

Effective Action Γ for the Quark Meson model

$$\Gamma\left[\langle \xi \rangle_{j}\right] \equiv -\log \int \mathcal{D}\xi \, e^{-S[\xi]} + \int d^{4}x \, j^{T} \langle \xi \rangle_{j} \qquad \begin{array}{l} \xi = (\sigma, \vec{\pi}, q, \bar{q}^{T})^{T}, \\ j \cdots \text{ source of } \xi \end{array}$$

Generating Functional
$$\int \mathcal{D}\xi \dots = \prod_{p=0}^{\Lambda} \int d\xi(p) \dots$$

introduce R_k into Γ to give a "mass" R_k to $\xi(p)$, $|p| < k \ (\Gamma \to \Gamma_k)$ 6

 $\blacktriangleright \text{ Derivative Expansion (valid for low momentum)}$ G. R. Golner Phys. Rev. B 33 no. 11, (1986) 7863-7866 $\Gamma_{k} = \int d^{4}x_{E} \left[Z_{q,k}(\bar{q}, q, \phi^{2}) \cdot \bar{q}(\gamma_{\mu}\partial_{\mu} + \gamma^{0}\mu)q + g_{k}(\bar{q}, q, \phi^{2}) \cdot \bar{q}(\sigma + i\gamma_{5}\vec{\tau} \cdot \vec{\pi})q + \frac{1}{2}Z_{\phi,k}(\bar{q}, q, \phi^{2}) \cdot (\partial_{\mu}\phi)^{2} + \frac{1}{8}Y_{\phi,k}(\bar{q}, q, \phi^{2}) \cdot (\phi_{a}\partial_{\mu}\phi_{a})^{2} + U_{k}(\phi^{2}) - c\sigma + \cdots \right]$

 Γ_k contains all possible terms that do not break SU(2) chiral symmetry.

- ignore higher order terms in derivatives Flow Equation $\partial_k \Gamma_k = \int_0^{\Lambda} dp \ \partial_k R_k(p) \dots \approx \int_0^k dp \dots$ Only low momenta (|p| < k) contribute to Γ_k .
- ignore higher order terms in fields and flows of $Y_{\phi,k}$ and g_k $Z_k(\bar{q}, q, \phi^2) \rightarrow Z_k, \qquad Y_{\phi,k} \rightarrow 0, g_k(\bar{q}, q, \phi^2) \rightarrow g,$

We consider $Z_{\phi,k}$ and $Z_{q,k}$, wavefunction renormalization constants.

Local Potential Approximation (LPA)

Only
$$U_k$$
 depends on k . $\frac{\partial U_k(\sigma)}{\partial k} = \frac{1}{2} \begin{pmatrix} \ddots & \ddots \\ \ddots & \ddots \\ \ddots & \ddots \end{pmatrix} - \begin{pmatrix} \otimes \\ & \ddots \\ & \ddots \end{pmatrix}$

To calculate this equation, we use the 3d optimized Regulator. D.F. Litim , Phys. Rev. D 64, 105007 (2001) meson part

$$\frac{1}{2} \underbrace{\overset{\otimes}{}}_{k} = \frac{k^4}{12\pi^2} \left[\frac{1 + 2n_B(E_{\sigma,k})}{E_{\sigma,k}} + 3\frac{1 + 2n_B(E_{\pi,k})}{E_{\pi,k}} \right] \quad \begin{array}{c} E_{\sigma,k} = \sqrt{k^2 + \partial_{\sigma}^2 U_k} \\ E_{\pi,k} = \sqrt{k^2 + \sigma^{-1} \partial_{\sigma} U_k} \end{array}$$

$$\bigotimes_{k=1}^{k} = \frac{k^4}{12\pi^2} 4N_f N_c \frac{1 - n_F (E_{q,k} - \mu) - n_F (E_{q,k} + \mu)}{E_{q,k}} \quad E_{q,k} = \sqrt{k^2 + (g\sigma)^2}$$

B. -J. Schaefer and J. Wambach, Nucl. Phys. A. 757. (2005) 479-492

It's not fully confirmed whether LPA is enough to describe the chiral phase transition.

We consider $Z_{q,k}$ and $Z_{\phi,k}$ as a next step of the LPA.

previous studies beyond the LPA

 $T \neq 0$ and $\mu = 0$ beyond the LPA

J. Braun, Phys. Rev. D 81.016008 (2010) $\cdots Z_{\phi,k}$, $Z_{q,k}$

A. J. Helmboldt et al. , Phys. Rev. D 91.054010 (2015) $\cdots Z_{\phi,k}(p)$, $Y_{\phi,k}(p)$

 $\rightarrow Z_k$ and $Y_{\phi,k}$ have little effect on finite T chiral phase transitions.

$T \neq 0$ and $\mu \neq 0$ beyond the LPA

J. M. Pawlowski et al. , Phys. Rev. D 90.076002 (2014) $\cdots Z_{\phi,k}$, $Z_{q,k}$, g_k

F. Rennecke et al. , Phys. Rev. D 96.016009 (2017) $\cdots Z_{\phi,k}$, $Z_{ud,k}$, $Z_{s,k}$, $g_{ud,k}$, $g_{s,k}$

$$U_k$$
 is expanded in powers of $\phi^2 \dots U_k = \sum_{n=0}^N \frac{a_{n,k}}{n!} (\phi^2 - \kappa)^n$

This method is not suitable for description of the 1st order phase transition.

We use the Grid Method that can access full σ dependences of U_k .

The FRG flow equation reduces to closed integro-differential equations for U_k , $Z_{q,k}$ and $Z_{\phi,k}$.

(1)
$$\frac{\partial U_k(\sigma)}{\partial k} = \frac{1}{2} \left(\begin{array}{c} & & \\ & & \\ & & \\ & & \end{array} \right) - \left(\begin{array}{c} & & \\$$

$$=\frac{k^{4}}{12\pi^{2}}\left[\left(1-\frac{\eta_{\phi,k}}{5}\right)\left(\frac{1}{E_{\sigma,k}}+3\frac{1}{E_{\pi,k}}\right)-\left(1-\frac{\eta_{q,k}}{4}\right)4N_{f}N_{c}\frac{1-\theta(\mu-E_{q,k})}{E_{q,k}}\right]$$

- Momenta of external lines : $p^{\phi}_{\mu} \rightarrow (0, \vec{0}), p^{q}_{\mu} \rightarrow (\pi T = 0, \vec{0})$
- σ dependence : $\sigma \rightarrow \sigma_{0,k} \equiv \operatorname{argmin}[U_k(\sigma) c\sigma]$

11

Results

Flows of $Z_{\phi,k}$ and $Z_{q,k}$ at $T, \mu = 0$

calculate up to a sufficiently small k ($k_{IR} = 50 \text{MeV}$)

Flow of the $U_k(\sigma)$ at $T, \mu = 0$

The 1st order phase transition becomes weak in the LPA $+Z_{\phi,k}, Z_{q,k}$.

The anomalous dimensions effect on the potential

$$(T, \mu = 0) \frac{\partial U_{k}(\sigma)}{\partial k} = \frac{k^{4}}{12\pi^{2}} \left[\left(1 - \frac{\eta_{\phi,k}}{5}\right) \left(\frac{1}{E_{\sigma,k}} + 3\frac{1}{E_{\pi,k}}\right) - \left(1 - \frac{\eta_{q,k}}{4}\right) 4N_{f}N_{c}\frac{1}{E_{q,k}} \right]$$

meson term quark term
$$quark term$$
$$\sigma_{\min,k} \equiv \operatorname{argmin}_{\sigma} U_{k}(\sigma)$$
The meson term reduces $\sigma_{\min,k}$.
The quark term increases $\sigma_{\min,k}$.
$$\eta_{\phi,k} = -k\partial_{k}\log Z_{\phi,k}$$
$$\eta_{q,k} = -k\partial_{k}\log Z_{q,k}$$
The meson effect is suppressed
more strongly.

beyond the LPA

- The potential in the range of small σ becomes larger.
- $\sigma_{\min,kIR}$ is shifted toward larger value.

Why does the 1st order phase transition become weaker?

$$\frac{\partial U_k(\sigma)}{\partial k} = \frac{k^4}{12\pi^2} \left[\left(1 - \frac{\eta_{\phi,k}}{5}\right) \left(\frac{1}{E_{\sigma,k}} + 3\frac{1}{E_{\pi,k}}\right) - \left(1 - \frac{\eta_{q,k}}{4}\right) 4N_f N_c \frac{1 - \theta(\mu - E_{q,k})}{E_{q,k}} \right]$$

LPA $\theta(\mu - E_{q,k})$ term reduces the potential and change $\sigma_0(\mu)$ discontinuously at a transition point μ_c .

beyondLPA Due to $\eta_{q,k}$, $\theta(\mu - E_{q,k})$ effect becomes weak.

Summary FRG analysis of the 2-flavor Quark-Meson model

<u>Approximation</u> \cdot LPA ... Only the potential U_k depends on k.

• beyondLPA ... $U_k + Z_{\phi,k}, Z_{q,k}$

<u>Result</u> The 1st order phase transition becomes weak.

 η_k s suppress the $\theta(\mu - E_{q,k})$ effect. It's important to consider Z_k at finite μ .

Outlook

consider the flow of $Y_{\phi,k}$, g_k and the dependence of ϕ^2 (not negligible flows in terms of the derivative expansion)