The multiplicity of the doubly charmed state T_{cc}^{+} in heavy-ion collisions

Luciano Melo Abreu

Instituto de Física
Universidade Federal da Bahia - Brazil

QNP2022 - September 2022
The exotics in HICs: $X(3872)$ and T_{cc}^+

Molecular and tetraquark interpretations in HICs? The coalescence model

Interactions in the hadron gas

Rate equation and multiplicities

System size dependence
The heavy exotics collection

- Since 2003 \([X(3872)]\): about fifty states observed!

67 new hadrons at the LHC

\begin{align*}
\Xi_b(5945)^0 & \quad \Lambda_b(5920)^0 \\
\Xi_b(5955)^- & \quad B_b(5970)^{+,-,0} \\
\Xi_b(5935)^- & \quad B_b(5840)^{+,-,0} \\
B_c(2S)^+ & \quad \Xi_b(6227)^- \\
& \quad \Xi_b(6097)^+ \\
& \quad \Lambda_b(6152)^0 \\
& \quad \Lambda_b(6146)^0 \\
B_b(6114)^0 & \quad \Xi_b(6227)^0 \\
& \quad \Xi_b(6100)^- \\
B_b(6070)^0 & \quad \Xi_b(6327)^0 \\
& \quad \Xi_b(6333)^0 \\
& \quad \Xi_b(6340)^0 \\
B_b(6227)^0 & \quad \Omega_b(6350)^- \\
& \quad \Omega_b(6340)^- \\
& \quad \Omega_b(6340)^- \\
B_b(6327)^0 & \quad \Xi_b(6070)^0 \\
& \quad \Xi_b(6100)^- \\
D_{s0}(2590) & \quad \Xi_c(2939)^0 \\
D_s(2860)^+ & \quad \Xi_c(2923)^0 \\
D_s(2760)^+ & \quad \Xi_c(2923)^0 \\
D_s(2760)^+ & \quad \Xi_c(2923)^0 \\
D_s(2760)^+ & \quad \Xi_c(2923)^0 \\
\end{align*}
Composition and binding mechanism?

Belle (2003): $X(3872)[J^P = 1^+]$
- Meson molecule (~ 10 fm)
- Compact tetraquark (~ 1 fm)

LHCb (2021): $T_{cc}^+(3875)[J^P = 1^+]$
- Hadron molecule
- Compact Tetraquark

Theoretical perspective

A compelling and unified understanding has not yet emerged

Necessity of more observables to distinguish its internal structure
Composition and binding mechanism?

Belle (2003): $X(3872)[J^P = 1^+]$
- **Meson molecule** (~ 10 fm)
- **Compact tetraquark** (~ 1 fm)

LHCb (2021): $T_{cc}^+(3875)[J^P = 1^+]$
- **Hadron molecule**
- **Compact Tetraquark**

Theoretical perspective

An compelling and unified understanding has not yet emerged

- Necessity of more observables to distinguish its internal structure

luciano.abreu@ufba.br

The multiplicity of the T_{cc}^+ in HICs

QNP2022 4 / 15
Promising alternative: exotics in HICs

Early stages of HIC's
- Large number of Q's produced
- Q's coalesce to form multiquarks

Hadron gas phase
- Multiquarks: interact with other hadrons
- Absorption / production
- Ex. $X_\pi \rightarrow D(\ast)\bar{D}(\ast)$ or $D(\ast)\bar{D}(\ast) \rightarrow X_\pi$
- Properties \rightarrow interpretation

(Braun-Munzinger and Donigus, Nucl. Phys. A 987 (2019) 144)

$luciano.abreu@ufba.br$
Promising alternative: exotics in HICs

Early stages of HIC’s
- Large number of Q’s produced
- Q’s coalesce to form multiquarks

Hadron gas phase
- Multiquarks: interact with other hadrons
- Absorption / production
- Ex. $X \pi \rightarrow D^(*) \bar{D}^(*)$ or $D^(*) \bar{D}^(*) \rightarrow X \pi$
- Properties \rightarrow interpretation

(Braun-Munzinger and Donigus, Nucl. Phys. A 987 (2019) 144)
Breaking news: first evidence of $X(3872)$ in HICs!

Evidence for $X(3872)$ in Pb-Pb Collisions and Studies of its Prompt Production at $\sqrt{s_{NN}}=5.02$ TeV

CMS Collaboration • Albert M. Sirunyan (Yerevan Phys. Inst.) et al. (Feb 25, 2021)

- $X(3872) \rightarrow J/\psi \pi^+ \pi^- \rightarrow \mu^+ \mu^- \pi^+ \pi^-$
- $\rho(PbPb) = \frac{N_{X(3872)}}{N_{\psi(2S)}} = 1.08 \pm 0.9 \pm 0.52$

$\rho(PbPb) \approx 10 \rho(pp)$

Unique experimental input to investigate the properties and nature of multiquark systems
Our strategy

Hadronic Interactions \Rightarrow Effective Lagrangians

\Downarrow

Amplitudes \Rightarrow Cross Sections \Rightarrow Therm. Av. Cross Sections

\Downarrow

Coalescence Model, Bjorken picture \Rightarrow Kinetic (rate) equation

\Downarrow

Time Evolution and size dependence of $N_{T_{cc}}, N_X$

\Downarrow

Diff. spatial configuration \Rightarrow diff. hadronic interactions \Rightarrow diff. final yields

$N_X^{(4q)} \neq N_X^{(Mol)}$

luciano.abreu@ufba.br
Hadronic Interactions

\[\mathcal{L}_{\pi DD^*} = ig_{\pi DD^*} D_\mu^* \vec{\tau} \cdot (\bar{D} \partial^\mu \pi - \partial^\mu \bar{D} \pi) + h.c., \]
\[\mathcal{L}_{\rho DD} = ig_{\rho DD}(D \bar{\tau} \partial_\mu \bar{D} - \partial_\mu D \bar{\tau} \bar{D}) \cdot \bar{\rho}^\mu, \]
\[\mathcal{L}_{\rho D^* D^*} = ig_{\rho D^* D^*} [(\partial_\mu D^{*\nu} \bar{\tau} \bar{D}_{\nu} - D^{*\nu} \bar{\tau} \partial_\mu \bar{D}_{\nu}^*) \cdot \bar{\rho}^\mu + (D^{*\nu} \bar{\tau} \cdot \partial_\mu \bar{\rho}_{\nu} - \partial_\mu D^{*\nu} \bar{\tau} \cdot \bar{\rho}_{\nu}) \bar{D}^{*\mu}] \]
\[\mathcal{L}_{\pi D^* D^*} = -g_{\pi D^* D^*} \epsilon^{\mu \nu \alpha \beta} \partial_\mu D_{\nu}^* \pi \partial_\alpha \bar{D}_{\beta}^*, \]
\[\mathcal{L}_{\rho DD^*} = -g_{\rho DD^*} \epsilon^{\mu \nu \alpha \beta} (D \partial_\mu \rho_{\nu} \partial_\alpha \bar{D}_{\beta}^* + \partial_\mu D_{\nu}^* \partial_\alpha \rho_{\beta} \bar{D}), \]

Ling et al. PLB (2022), 2108.00947:

\[\mathcal{L}_{T_{cc}} = ig_{T_{cc} DD^*} T^{\mu}_{cc} D^{*\mu}_{D}, \]

Abreu, Navarra, Nielsen, Vieira, EPJC (2022), 2110.11145 \Rightarrow QCD sum rules

\[\Pi^{(phen)}_{\alpha \mu} \propto \langle 0 | T[j^D_{\alpha} (x) j^D_{\mu} (y) j^{+\dagger}_{\mu} (0)] | 0 \rangle; \]
\[g_{T_{cc} DD^*}(Q^2) = g_{T_{cc} DD^*} e^{-g(Q^2 + m_D^2)}, \]
\[g_{T_{cc} DD^*} = (1.7 \pm 0.2) \text{ GeV}. \]
Abreu, Navarra, Nielsen, Vieira, EPJC (2022), arXiv:2110.11145

Ho, Cho, Song, Lee, PRC (2018), 1702.00486: Monopole form factors

“Quasi-free” model: \(\sigma_{T_{cc} \pi \rightarrow DD^* \pi} = \sigma_{D \pi \rightarrow D \pi} + \sigma_{D^* \pi \rightarrow D^* \pi} \Rightarrow \text{Molecules!} \)

QCDSR ⇒ Natural description for tetraquarks!

QCDSR ⇒ Reduction of the uncertainties!

luciano.abreu@ufba.br The multiplicity of the \(T_{cc}^{+} \) in HICs QNP2022 9 / 15
Thermally Averaged Cross Sections for tetraquarks

\[\langle \sigma_{ab \rightarrow cd} \rangle = \frac{\int d^3 p_a d^3 p_b f_a(p_a) f_b(p_b) \sigma_{ab \rightarrow cd}}{\int d^3 p_a d^3 p_b f_a(p_a) f_b(p_b)} \]

(Inverse processes ⇒ detailed balance equation)
Time Evolution of T_{cc} Multiplicity

$$\frac{dN_{T_{cc}}(\tau)}{d\tau} = \sum_{c,c'=D,D^*; \varphi=\pi,\rho} \left[\langle \sigma_{cc' \to T_{cc} \varphi} v_{cc'} \rangle n_c(\tau) N_{c'}(\tau) - \langle \sigma_{T_{cc} \to cc' \varphi} v_{T_{cc} \varphi} \rangle n_{\varphi}(\tau) N_{T_{cc}}(\tau) \right]$$

Bjorken picture:

$$T(\tau) = T_C - (T_H - T_F) \left(\frac{\tau - \tau_H}{\tau_F - \tau_H} \right)^{\frac{4}{5}}; \quad V(\tau) = \pi \left[R_C + v_C (\tau - \tau_C) + \frac{a_C}{2} (\tau - \tau_C)^2 \right]^2 \tau_C$$

Initial conditions \Rightarrow coalescence model

$$N_{\text{Coal}}^{T_{cc}} \approx g_T \prod_{j=1}^{n} \frac{N_j}{g_j} \prod_{i=1}^{n-1} \left(\frac{4\pi \sigma_i^2}{V(1 + 2\mu_i T \sigma_i^2)} \right)^{\frac{3}{2}} \left[\frac{4\mu_i T \sigma_i^2}{3(1 + 2\mu_i T \sigma_i^2)} \right]^{l_i}$$

<table>
<thead>
<tr>
<th>State</th>
<th>$N^{(4q)}(\tau_C)$</th>
<th>$N^{(Mol)}(\tau_H)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{cc}^+</td>
<td>8.40×10^{-5}</td>
<td>4.10×10^{-2}</td>
</tr>
<tr>
<td>$X(3872)$</td>
<td>1.81×10^{-4}</td>
<td>7.50×10^{-2}</td>
</tr>
</tbody>
</table>

- Hundred times more molecules!
- Changes in initial multiplicity due to interactions in the hadron gas?
- Different interactions for tetraquarks and molecules?
Time Evolution of T_{cc} Multiplicity

Abreu, Navarra, Vieira, PRD (2022); 2202.10882

Pb - Pb at $\sqrt{s_{NN}} = 5.02$ TeV

Difference between $N^{(4q)}$ and $N^{(Mol)}(\tau_H)$ decreases but remains large!
System size and number of charged particles

Larger size:
- Greater $N = \left(\frac{dN_{ch}}{d\eta} \right)_{|\eta|<0.5}^{1/3}$
- System lives longer
- More charm quarks
- More charmed mesons

System size and freeze-out time

- Bjorken-like cooling:
 \[\tau_F T_F^3 = \tau_H T_F^3 \]
- Evolution stops later:
 \[\tau_F = \tau_H \left(\frac{T_H}{T_{F0}} \right)^3 e^{3bN} \]
System size and volume

- From Statistical Hadronization Model and EXHIC [Vovchenko et al. PRC (2019); 1906.03145]:
 \[V = 2.82 N^3 \]

System size and number of quarks

- ALICE, JHEP (2015); 1505.00664: \(N_D \propto (N^3)^{1.6} \)
- \(N_c \propto N_D \propto N^{4.8} \)
- ALICE, PRC (2013): \(N_q \propto N^3 \)
- Fix the constants using EXHIC

Initial multiplicities and \(N \)

\[
N_{T_{cc}}^{(4q)} \propto \frac{N_c^2 N_c^2}{V^3} \propto N^{6.6}
\]

\[
N_{T_{cc}}^{(Mol)} \propto \frac{N_D N_D^*}{V} \propto N^{6.6}
\]

- Multiplicities grow fast with the system size!
- In the same way for molecules and tetraquarks!

\((dN_{ch}/d\eta)^{\frac{1}{3}} \)

\(N_{T_{cc}} \)
Conclusions

- HICs: promising testing ground for exotics
- QCDSR: useful for tetraquarks and reduces the uncertainties
- Coalescence model: much more molecules than tetraquarks
- After the hadron gas phase: difference of multiplicities remains large!
- Difference: remains the same even for smaller systems!

Thank You!!!

Partial financial support:

luciano.abreu@ufba.br
Conclusions

- HICs: promising testing ground for exotics
- QCDSR: useful for tetraquarks and reduces the uncertainties
- Coalescence model: much more molecules than tetraquarks
- After the hadron gas phase: difference of multiplicities remains large!
- Difference: remains the same even for smaller systems!

Thank You!!!

Partial financial support:

- CNPq
- Fapesb