Μ	otivations	
0	000	

Analysi 000

First measurement of Timelike Compton Scattering P.C., Silvia Niccolai, Stepan Stepanyan, the CLAS Collaboration

Published 22 December 2021: 10.1103/PhysRevLett.127.262501

Pierre Chatagnon Jefferson Lab

pierrec@jlab.org 🗹

QNP 2022 5th-9th September 2022

lotivations	Experimental setup and data set	Analysis	Results
0000	0	000	00000
Outline			

- Introduction to the Generalized Parton Distributions
- Timelike Compton Scattering
- Jefferson Lab and the CLAS12 detector
- Analysis strategy and positron identification
- Results

Analys 000

The Generalized Parton Distributions

Understanding the inner structure of nucleons is challenging

 \rightarrow Perturbative formalism not applicable to QCD at low energies

TCS measurement with CLAS12

Figures in Belitsky, Radyushkin, Physics Reports, 2005 🗹

Motivations 0000

Experimental setup and data set

What can we learn from GPDs ?

• Tomography of the nucleon The Fourier transform of the GPDs can be interpreted as a probability density:

$$H^q(x, b_{\perp}) = \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} e^{-ib_{\perp}\Delta_{\perp}} H^q(x, 0, -\Delta_{\perp}^2)$$

Burkardt, Int.J.Mod.Phys.A, 2002

Spin puzzle

$$\frac{1}{2} = J_Q + J_G$$

li's sum rule.

$$J_Q = \sum_q \frac{1}{2} \int_{-1}^{1} dx \ x(H^q(x,\xi,0) + E^q(x,\xi,0))$$

Ji, Phys. Rev. Lett, 1997 Z

Mechanical properties Link to the Energy-Momentum Tensor (EMT) FFs

$$\int_{-1}^{1} dx \, x H^{q}(x,\xi,t) = A^{q}(t) + \xi^{2} D^{q}(t)$$
$$\int_{-1}^{1} dx \, x E^{q}(x,\xi,t) = B^{q}(t) - \xi^{2} D^{q}(t)$$

Polyakov, Physics Letters B, 2003 Z

$$x + \xi$$

 gPD
 p
 $t = (p' - p)^2$

- BH cross section only depends on electromagnetic FFs
- Unpolarized interference cross section Berger, Diehl, Pire, Eur.Phys.J.C23:675-689,2002 I

$$\frac{d^4 \sigma_{INT}}{dQ'^2 dt d\Omega} \propto \frac{L_0}{L} \left[\cos(\phi) \frac{1 + \cos^2(\theta)}{\sin(\theta)} \operatorname{Re} \tilde{M}^{--} + \ldots \right]$$
$$\rightarrow \tilde{M}^{--} = \frac{2\sqrt{t_0 - t}}{M} \frac{1 - \xi}{1 + \xi} \left[F_1 \mathcal{H} - \xi (F_1 + F_2) \tilde{\mathcal{H}} - \frac{t}{4M^2} F_2 \mathcal{E} \right]$$

Polarized interference cross section

$$\frac{d^4\sigma_{INT}}{dQ'^2 dt d\Omega} = \frac{d^4\sigma_{INT} \mid_{\text{unpol.}}}{dQ'^2 dt d\Omega} - \nu \cdot A \frac{L_0}{L} \left[\sin(\phi) \frac{1+\cos^2(\theta)}{\sin(\theta)} \operatorname{Im} \tilde{M}^{--} + \dots \right]$$

Both Im \mathcal{H} and Re \mathcal{H} can be accessed by TCS

TCS measurement with CLAS12

Motivations	Experimental setup and data set	Analysis
000	0	000

Motivations to measure TCS

Test of universality of GPDs

- TCS is parametrized by GPDs
- Comparison between DVCS and TCS results allows to test the universality of GPDs (especially the imaginary part of \mathcal{H})
- $\bullet~$ TCS does not involve Distribution Amplitudes unlike Deeply Virtual Meson Production \rightarrow direct comparison between DVCS and TCS

Real part of CFFs and nucleon D-term

 $\bullet~{\rm Re}{\cal H}$ is still not well constrained by existing data.

$$\operatorname{Re}\mathcal{H}(\xi,t) = \mathcal{P}\int_{-1}^{1} dx \left(\frac{1}{\xi-x} - \frac{1}{\xi+x}\right) \operatorname{Im}\mathcal{H}(\xi,t) + \Delta(t)$$

• $\Delta(t)$ related to the EM FF $D^Q(t)$, related to mechanical properties of the nucleon.

$$\Delta(t) \propto D^Q(t) \propto \int d^3 \mathbf{r} \ p(r) rac{j_0(r\sqrt{-t})}{t}$$

Review in Polyakov, Schweitzer, International Journal of Modern Physics A, 2018 M.V. Polyakov. PLB, 2003 TCS measurement with CLAS12

Experimental setup: CLAS12 at Jefferson Lab

Data set used in this work

- Fall 2018 run period
- \textit{LH}_2 target / 10.6 GeV polarized e^- beam

- Forward Detector (6 sectors)
 - Torus magnet
 - Drift Chambers
 - Forward Time-of-Flight
 - Calorimeters (EC and PCAL
 - Cherenkov counters

Central Detector

- Solenoid magnet
- Central Vertex Tracker (Silicon and micromegas)
- Central Time-of-Flight
- Central Neutron Detector

Figure in Burkert et al., NIM A, 2020

- Inbending torus magnetic field
- Accumulated charge: ~ 150 mC (200 fb $^{-1}$)

Motivations 0000 Experimental setup and data set

Analys 000 Results 00000

Experimental setup: CLAS12 at Jefferson Lab

Data set used in this work

- Fall 2018 run period
- \textit{LH}_2 target / 10.6 GeV polarized e^- beam
- Inbending torus magnetic field
- Accumulated charge: $\sim 150 \text{ mC} (200 \text{ fb}^{-1})$

Experimental setup: CLAS12 at Jefferson Lab

Data set used in this work

- Fall 2018 run period
- LH_2 target / 10.6 GeV polarized e^- beam
- Inbending torus magnetic field
- Accumulated charge: $\sim 150 \text{ mC} (200 \text{ fb}^{-1})$

М	otiv	ati	ons	
0	00	0		

Data/Simulation comparison

Phase space of interest

- 0.15 $\text{GeV}^2 < -t < 0.8 \text{ GeV}^2$
- 1.5 GeV $< M_{e^+e^-} < 3~{\rm GeV}$
- 4 GeV $< E_{\gamma} < 10.6$ GeV

Observations

- Vector mesons peaks are visible in data: ω (770 MeV), ρ (782 MeV), Φ (1020 MeV) and J/ψ (3096 MeV)
- Data/simulation are matching at 15 % level, up to normalization factor. No evident high mass vector meson production (ρ (1450 MeV, 1700 MeV)

 Motivations
 Experimental setup and data set
 Analysis
 Results

 0000
 0
 0000
 0000

Observable 1: Photon polarization asymmetry $(A_{\odot U})$

Definition

$$A_{\odot U} = \frac{d\sigma^+ - d\sigma^-}{d\sigma^+ + d\sigma^-} = \frac{-\frac{\alpha_{em}^3}{4\pi s^2} \frac{1}{-t} \frac{m_p}{Q'} \frac{1}{\tau\sqrt{1-\tau}} \frac{L_0}{L} \sin \phi \frac{(1+\cos^2\theta)}{\sin(\theta)} \operatorname{Im} \tilde{M}^{--}}{d\sigma_{BH}}$$

Experimental measurement

•
$$A_{\odot U}(-t, E\gamma, M; \phi) = \frac{1}{P_b} \frac{N^+ - N^-}{N^+ + N^-}$$

where $N^{\pm} = \sum \frac{1}{A_{cc}} P_{trans.}$

P_{trans.} is the transferred polarization from the electron to the photon, fully calculable in QED

Olsen, Maximon, Phys. Rev.114 (1959) 🗗

- *P_b* is the **polarization of the CEBAF** electron beam (85%)
- The $\phi\mbox{-distribution}$ is fitted with a sine function

Motivations	Experimental setup and data set	Analysis	Results
0000	0	000	0000
Aou results			

- A sizeable asymmetry is measured (above the expected vanishing $A_{\odot U}$ of BH)
 - \rightarrow signature of TCS
- Theoretical predictions were provided by M.Vanderhaeghen, JGU Mainz (VGG model) and P.Sznajder, NCBJ Warsaw (GK model)
- Size of the asymmetry is well reproduced by VGG and GK models → model dependent hints for universality of GPDs

-t (GeV²)

Observable 2: F	orward-Backward asymn	netrv	
0000	0	000	00000
Motivations	Experimental setup and data set	Analysis	Results

• Use the different parity of the TCS and BH amplitudes under the inversion of the leptons directions

$$k \leftrightarrow k' \Longleftrightarrow (heta, \phi) \leftrightarrow (180^\circ - heta, 180^\circ + \phi)$$

 $\begin{array}{ll} \textbf{BH cross section} & \textbf{Int. cross section} \\ \hline \frac{d\sigma_{BH}}{dQ^2 \, dt \, d\Omega} \propto & \xrightarrow{1+\cos^2 \theta} \xrightarrow{FB} \frac{d\sigma_{BH}}{dQ^2 \, dt \, d\Omega} & & \xrightarrow{d^4\sigma_{INT}}{dQ'^2 dt \, d\Omega} \propto & \xrightarrow{L_0^0 \, \cos(\phi) \frac{1+\cos^2(\theta)}{\sin(\theta)}} \xrightarrow{FB} - \frac{d\sigma_{INT}}{dQ^2 \, dt \, d\Omega} \end{array}$

A_{FB} formula

$$A_{FB}(\theta_{0},\phi_{0}) = \frac{d\sigma(\theta_{0},\phi_{0}) - d\sigma(180^{\circ} - \theta_{0},180^{\circ} + \phi_{0})}{d\sigma(\theta_{0},\phi_{0}) + d\sigma(180^{\circ} - \theta_{0},180^{\circ} + \phi_{0})} = \frac{-\frac{\alpha_{em}^{2}}{4\pi s^{2}} \frac{1}{-t} \frac{m_{p}}{Q'} \frac{1}{\tau \sqrt{1-\tau}} \frac{L_{0}}{L} \cos \phi_{0} \frac{(1+\cos^{2}\theta_{0})}{\sin(\theta_{0})} \operatorname{Re}\tilde{M}^{--}}{d\sigma_{BH}(\theta_{0},\phi_{0}) + d\sigma_{BH}(180^{\circ} - \theta_{0},180^{\circ} + \phi_{0})}$$

Integration over forward angular bin: $heta \in [50^\circ, 80^\circ]/\phi \in [-40^\circ, 40^\circ]$

- Concept initially explored for J/Ψ production Gryniuk, Vanderhaeghen, Phys. Rev. D, 2016 2.
- Exploratory studies for TCS performed alongside this work, during my thesis.
- Predictions for TCS have been published very recently + LO radiative correction negligible Heller, Keil, Vanderhaeghen, *Phys. Rev. D*, 2021 2.

Motivations	Experimental setup and data set	Analysis	Results
0000	0	000	00000

-0.2

-0.4

02 03

A_{FB} results

- A_{FB} measured in two mass regions: $M \in [1.5 \text{ GeV}, 3 \text{ GeV}]$ and $M \in [2 \text{ GeV}, 3 \text{ GeV}]$
- The measured *A_{FB}* is non-zero: evidence for signal beyond pure BH contribution
- Three model predictions
 - 1 VGG without D-term
 - 2 VGG with D-term

D-term in Pasquini et al., Physics Letters B, 2014

- 3 GK without D-term
- Measured asymmetry is better reproduced by the VGG model including the D-term in both mass bins

 \rightarrow importance of the D-term in the parametrization of GPDs

 \rightarrow TCS is a prime reaction to constrain the D-term

-- DATA

0.6 0.7 0.8 -t (GeV²

🛨 BH — VGG

04 05

Tot. Syst.

···· GK, no D-term

--- VGG, no D-term

Motivations	Experimental setup and data set	Analysis	Results
0000	0	000	00000
Conclusions			

Takeaways

- TCS observables were measured for the first time
- Sizeable $A_{\odot U}$ (sensitive to Im \mathcal{H}) and A_{FB} (sensitive to Re \mathcal{H}) are clear signatures of TCS
- The results obtained allow to draw physical conclusions:
 - the $A_{\odot II}$ is well reproduced by models that reproduce existing DVCS data \rightarrow hints for universality of GPDs
 - the Forward/Backward asymmetry appears to be better reproduced by model with a D-term
 - \rightarrow promising path to the measurement of the D-term
 - \rightarrow access to the mechanical properties of the proton

Opportunities ahead to measure TCS:

- EIC, Ultra-peripheral collisions (LHC) → test QCD NLO corrections Mueller, Pire, Szymanowski, Wagner, PRD, 2012
- CLAS12 high lumi/high energy upgrades \rightarrow improve constraints on D-term

PRL article: 10.1103/PhysRevLett.127.262501

TCS article

Back Up

Acceptance

Acceptance calculation using BH-weighted events

$$Acc_{\mathcal{B}} = \frac{N_{\mathcal{B}}^{REC}}{N_{\mathcal{B}}^{GEN}} \qquad \qquad N_{\mathcal{B}}^{REC} = \sum_{REC \in \mathcal{B}} \frac{Eff_{corr}}{w} \qquad \qquad N_{\mathcal{B}}^{GEN} = \sum_{GEN \in \mathcal{B}} w$$

Multidimensional binning of the acceptance

4 bins in -t, 3 bins in E_{γ} and Q'^2 , $10^{\circ} \times 10^{\circ}$ bins in the ϕ/θ plane. Bins with $\frac{\Delta Acc}{Acc} > 0.5$ and Acc < 0.05 are discarded (ΔAcc is statistical error).

Efficiency corrections

- Data-driven correction for the proton detection efficiency derived using ep → e'π⁺π⁻(p') reaction
- Efficiency correction from **background merging** using random trigger events

Positron identification

Systematics

Method

• Calculated from generated BH events, and full-chain simulated events.

Proton

• Apply χ^2 cut for the proton identification

Positron Identification

 Vary the positron ID cut (0.5 ± 0.3; max. significance region)

Efficiency

• Calculate observable with/without data-driven proton efficiency

Exclusivity cuts

• Vary the values of the exclusivity cuts: $| Pt/P | < 0.05 \pm 0.01, | M_X^2 | < 0.4 \pm 0.1 \text{ GeV}^2$ Fully integrated relative uncertainty

Acceptance

- Calculate observable with acceptance produced using BH-weighted events or unity weights
- Neighboring bins uncertainties are averaged
- Then added in quadrature