SPD experiment at JINR

Igor Denisenko (on behalf of the SPD Collaboration) iden@jinr.ru

The 9th International Conference on Quarks and Nuclear Physics 5-9 September 2022

Nuclotron-based Ion Collider fAcility (NICA)

NICA and other facilities

SPD CDR (arXiv:2102.00442)

Experimental	SPD	RHIC 29	EIC 26	AFTER	SpinLHC
facility	@NICA 30			@LHC 24	25
Scientific center	JINR	BNL	BNL	CERN	CERN
Operation mode	collider	collider collider collider		fixed	fixed
				target	target
Colliding particles	$p^{\uparrow} extsf{-}p^{\uparrow}$	p^\uparrow - p^\uparrow	$e^{\uparrow}-p^{\uparrow},d^{\uparrow},{}^{3}\mathrm{He}^{\uparrow}$	$p extsf{-}p^\uparrow, d^\uparrow$	p - p^{\uparrow}
& polarization	d^{\uparrow} - d^{\uparrow}				
	$p^{\uparrow} extsf{-}d,p extsf{-}d^{\uparrow}$				
Center-of-mass	≤27 (<i>p</i> - <i>p</i>)	63, 200,	20-140 (<i>ep</i>)	115	115
energy $\sqrt{s_{NN}}$, GeV	≤13.5 (<i>d</i> - <i>d</i>)	500			
	≤19 (<i>p</i> - <i>d</i>)				
Max. luminosity,	~1 (<i>p</i> - <i>p</i>)	2	1000	up to	4.7
$10^{32} \text{ cm}^{-2} \text{ s}^{-1}$	$\sim 0.1 \; (d-d)$			${\sim}10(p{\text -}p)$	
Physics run	>2025	running	>2030	>2025	>2025
			1		

NICA is unique for double polarized $d^{\uparrow}d^{\uparrow}$ collisions at these energies.

Motivation for the experiment

Main goal of the experiment – spin-dependent gluon structure of proton and deuteron.

- Gluon content of nucleon is poorly understood.
- 3D tomography of gluon proton and deuteron structure in the momentum space (TMD PDFs).
- Three probes of gluon structure chosen in this energy range:

- Measurements at SPD should help to improve our understanding of QCD and resolve spin and mass crises.
- Many other important aspects of QCD to be studied in such collisions.

Leading twist gluon TMD PDFs

SPD kinematic coverage

SPD initial stage

- Polarized and unpolarized phenomena at low energies (3.4 GeV < √s_{NN} < 10 GeV) and reduced luminosity
- p-p, d-d, and ion collisions (up to Ca)
- Simplified detector set-up
- Up to 2 years of data taking

Range System muon identification and coarse hadron calorimetry

Straw tracker Magnet Range system MicroMegas Endcap Range system Endcap MicroMegas Beam pipe Beam pipe Com x4 Zero degree calorimeter

Magnetic field up to **1.2 T**

BBC and ZDC for online polarimetry

Straw tracker:

σ ~ 150 μm
σ(dE/dx) = 8.5 %

Micromegas central tracker: $\sigma \sim 150 \ \mu m$

SPD experiment at JINR

ISSN 1063-7796, Physics of Particles and Nuclei, 2021, Vol. 52, No. 6, pp. 1044-1119. © Pleiades Publishing, Ltd., 2021.

Physical program:

- spin effects in p-p, p-d, and d-d elastic scattering
- spin effects in hyperon production
- multiquark correlations (SRC)
- dibaryon resonances
- physics of light and intermediate nuclei collisions
- hypernuclei

...

- open charm and charmonia production near threshold
- large pT hadron production to study diquark structure of proton
- antiproton production measurements for astrophysics and BSM search

Possible Studies at the First Stage of the NICA Collider Operation with Polarized and Unpolarized Proton and Deuteron Beams

V. V. Abramov^a, A. Aleshko^b, V. A. Baskov^c, E. Boos^b, V. Bunichev^b, O. D. Dalkarov^c, R. El-Kholy^d, A. Galoyan^e, A. V. Guskov^f, V. T. Kim^{g, h}, E. Kokoulina^{e, i}, I. A. Koop^{k, l, m}, B. F. Kostenko^m,
A. D. Kovalenko^{e, †}, V. P. Ladygin^e, A. B. Larionov^{o, n}, A. I. L'vov^c, A. I. Milstein^{i, k}, V. A. Nikitin^e,
N. N. Nikolaev^{p, z}, A. S. Popov^j, V. V. Polyanskiy^c, J.-M. Richard^q, S. G. Salnikov^j, A. A. Shavrin^r,
P. Yu. Shatunov^{j, k}, Yu. M. Shatunov^{j, k}, O. V. Selyuginⁿ, M. Strikman^s, E. Tomasi-Gustafsson^t,
V. V. Uzhinsky^m, Yu. N. Uzikov^{f, u, v, *}, Qian Wang^w, Qiang Zhao^{x, y}, and A. V. Zelenov^g
^a NRC "Kurchatov Institute"—IHEP, Protvino, Moscow oblast, 142281 Russia
^b Skobeltsyn Institute of Nuclear Physics, MSU, Moscow, 119991 Russia

^c Lebedev Physical Institute, Moscow, 119991 Russia ^c Lebedev Physical Institute, Moscow, 119991 Russia ^d Astronomy Department, Faculty of Science, Cairo University, Giza, 12613 Egypt ^e Veksler and Baldin Laboratory of High Energy Physics, Joint Institute for Nuclear Research, Dubna, Moscow oblast, 141980 Russia ^f Dzhelepov Laboratory of Nuclear problems, Joint Institute for Nuclear Researches, Dubna, Moscow oblast, 141980 Russia ^g Petersburg Nuclear Physics Institute, NRC KI, Gatchina, Russia ^h St. Petersburg Polytechnic University, St. Peterburg, Russia ⁱ Sukhoi State Technical University of Gomel, Gomel, 246746 Belarus

J Rudhar Institute of Nuclear Physics of SR RAS Novasihirsk 630000 Russia

Physics of Particles and Nuclei 52, 1044 (2021) arXiv:2102.08477

SPD final layout

SPD final layout

SPD 2-nd stage

Physical program:

- unpolarized and polarized proton and deuteron structure:
 - gluon helicty
 - gluon TMDs (Sivers and Boer-Mulders)
 - gluon transversity and tensor polarized gluon distribution in deuteron
 - unpolarized proton and deuteron gluon PDF at high x
 - non-nucleonic degrees of freedom in deuteron...
- tests of QCD factorization
- charmonia production mechanisms

Progress in Particle and Nuclear Physics

Volume 119, July 2021, 103858

Review

On the physics potential to study the gluon content of proton and deuteron at NICA SPD

A. Arbuzov ^a, A. Bacchetta ^{b, c}, M. Butenschoen ^d, F.G. Celiberto ^{b, c, e, f}, U. D'Alesio ^{g, h}, M. Deka ^a, I. Denisenko ^a, M.G. Echevarria ⁱ, A. Efremov ^a, N.Ya. Ivanov ^{a, j}, A. Guskov ^{a, k} $\stackrel{>}{\sim}$ ⊠, A. Karpishkov ^{I,} ^a, Ya. Klopot ^{a, m}, B.A. Kniehl ^d, A. Kotzinian ^{j, o}, S. Kumano ^p, J.P. Lansberg ^q, Keh-Fei Liu ^r ... O. Teryaev ^a

Construction site

Gluon Sivers function

- GSF correlation between transverse spin and gluon ${\bf k}_{\rm T}$
- Poorly known, extracted in GPM, CGI-GPM and very recently TMD approaches
- Probed by TSSA

 $\sigma(\phi) \propto 1 + P \cdot A_N \sin(\phi_{\text{pol}} - \phi)$

First kT moments for GSF, GPM (JHEP09(2015)119))

Gluon helicity distribution

∆g(x) $A_{LL} = \frac{\sigma^{++} - \sigma^{+-}}{\sigma^{++} + \sigma^{+-}}$ 0.4 $x\Delta g(x,Q^2=10 \text{ GeV}^2)$ 0.3 0.2 0.10 -0.1DSSV14 🚟 and 68% C.L. contours -0.2 MC-replicas MC-average -0.3 NNPDFpol1.1 === and 1-o contours -0.4 0.003 0.01 0.03 0.1 0.3 0.5 0.001 Phys. Rev. D 100, 114027 (2019)

07.09.22

Charmonia production as a probe of gluon TMD PDFs

Charmonia production

- dominated by gluon-gluon fusion
- high cross-section
- J/ ψ can be easily reconstructed from the $\mu^+\mu^-$ decay, $\psi(2S)$ and χ_{c1} can be reconstructed based on this decay
- hadronization of cc pair is not well understood theoretically:
 - (Improved) Color Evaporation Model
 - CSM
 - NRQCD
- TMD factorization is not always possible
- η_c might be the best probe, but its observation is challenging experimentally
- the J/ψ signal is "contaminated" by feed-down contributions

Charmonia production at SPD

- High statistics: 12 million inclusive $J/\psi(\rightarrow \mu^{+}\mu^{-})$ events per year
- Wide kinematic coverage
- Ability to measure also production properties of $\psi(\text{2S}),\,\chi_{_{c1}}$ and $\chi_{_{c2}}$
- Strategy is to obtain all possible measurements in the wide kinematic range
- Constrain both theoretical approaches and PDFs
- Our p_T are mostly below $M_{J/\psi}$
- NRQCD LDME → shape functions (Echevarria, 2019)

Inclusive J/ψ measurements

- Reconstruction efficiency: ~40%
- Statistics: ~ 4.5–5.0 M (selected events) per year
- Large background due to pion decays and muon misidentification in RS

Observables:

- cross-section, p_T-, x_F-dependencies
- polarization
- asymmetries

A_{N} for inclusive J/ ψ production

16

Projected stat. uncertainties and predictions from PRD104, 016008 (2021)

07.09.22

A_{II} for inclusive J/ ψ production

PRD94 112008 (2016)

(a)

6

p_{_} [GeV/c]

(b)

2.2

|y|

5

1.8

2

Projected statistical uncertainties for SPD

- |y| < 2 is covered •
- At SPD both $\Delta g(x_1)$ and $\Delta g(x_2)$ are expected to be close to the maximum
- A measurable A_{μ} of the order of 1-10% can be expected

On other measurements with charmonia

- $\eta_c \rightarrow p\overline{p}, \Lambda\overline{\Lambda}?$
 - 500K selected events for $\eta_c \rightarrow p\overline{p}$
 - huge background
- Double J/ψ production
 - 50-100 events/year for both J/ ψ dilepton decay modes

Prompt photons: A_N

07.09.22

Prompt photons: A

Impact of SPD data is estimated by

- generating "SPD data" according to current PDFs (NLO, NNPDF3.0, DSSV2014) – W. Vogelsong, 2021
- prescribing errors estimated for 1 year data taking at SPD with √s = 27 GeV
- Bayesian reweighing of MC replicas

Predictions with new "data" added (top) and ration of the uncertainties (bottom). Courtesy R. Sassot, I. Borsa, 2021.

Uncertainties are reduced by factor of 2 for 0.5 < x < 0.8

Measurements with D mesons

 $D0 \rightarrow \pi^{+} + K^{-}$: secondary vertex Z resolution

- Predictions for A_{N} : CGI-GPM, Saleev et. al
- D meson pair production probe Boer-Mulders function
- Interpretation requires FF
- Ongoing work to specify expected precision of our measurements

Deuteron gluon structure

07.09.22

SPD experiment at JINR

Running strategy

Physics goal	Required time	Experimental conditions					
First stage							
Spin effects in <i>p</i> - <i>p</i> scattering	0.3 year	$p_{L,T} - p_{L,T}, \sqrt{s} < 7.5 \text{ GeV}$					
dibaryon resonanses							
Spin effects in <i>p</i> - <i>d</i> scattering,	0.3 year	d_{tensor} - $p, \sqrt{s} < 7.5 \text{ GeV}$					
non-nucleonic structure of deuteron,							
\bar{p} yield							
Spin effects in <i>d</i> - <i>d</i> scattering	0.3 year	d_{tensor} - d_{tensor} , \sqrt{s} <7.5 GeV					
hypernuclei							
Hyperon polarization, SRC,	together with MPD	ions up to Ca					
multiquarks							
Second stage							
Gluon TMDs,	1 year	$p_T - p_T, \sqrt{s} = 27 \text{ GeV}$					
SSA for light hadrons							
TMD-factorization test, SSA,	1 year	p_T - p_T , 7 GeV< \sqrt{s} <27 GeV					
charm production near threshold,		(scan)					
onset of deconfinment, \bar{p} yield							
Gluon helicity,	1 year	$p_L p_L, \sqrt{s} = 27 \text{ GeV}$					
Gluon transversity,	1 year	d_{tensor} - d_{tensor} , $\sqrt{s_{NN}} = 13.5 \text{ GeV}$					
non-nucleonic structure of deuteron,		or/and d_{tensor} - p_T , $\sqrt{s_{NN}} = 19 \text{ GeV}$					
"Tensor porlarized" PDFs		• • • •					

	Creating of polarized infrastructure		Upgrade of polarized infrastructure	
2023	2026	2028	2030	2032
	SPD const	ruction 1s of o	SPD u t stage peration	upgrade 2nd stage of operation

Summary

- The SPD experiment is a comprehensive facility to study **polarized** and **unpolarized gluon content** of **proton** and **deuteron** in p-p and d-d collisions with √s up to 27 GeV.
- The detector is optimized for three complementary probes: charmonia production, prompt photons, and D-meson production.
- SPD can contribute to:
 - gluon TMD (Sivers and Boer-Mulders)
 - gluon helicity PDF
 - unpolarized gluon PDFs of proton and deuteron
 - gluon transversity in deuteron

- ...

- Apart from that, the SPD physics program covers large variety of different aspects of QCD during the initial and final stages of the experiment.
- The physical program of SPD experiment with respect to nucleon gluon content is complementary to those of experiments at RHIC, EIC, and proposed fixed target program at LHC (AFTER, LHC-Spin).

spd.jinr.ru

