Heavy-flavor mesons in a hot mesonic bath

Glòria Montaña Faiget

In collaboration with:

Àngels Ramos, Laura Tolós, Juan Torres-Rincón

Based on:

Phys.Lett.B 806 (2020) 135464 • e-Print: 2001.11877 *Phys.Rev.D* 102 (2020) 9, 096020 • e-Print: 2007.12601 *Eur.Phys.J.A* 56 (2020) 11, 294 • e-Print: 2007.15690 *Phys.Rev.C* 105 (2022) 2, 025203 • e-Print: 2106.01156

QNP2022 - The 9th International Conference on Quarks and Nuclear Physics 5-9 September 2022

Applications

Introduction

We study hadronic molecules using effective field theories consistent with the symmetries of QCD:

- Chiral symmetry in the limit $m_u, m_d, m_s \to 0$ Chiral perturbation theory (χ PT)
- Heavy-quark symmetries in the limit $m_c, m_b
 ightarrow \infty$
 - Heavy-quark flavor symmetry (HQFS): $\{D, \overline{B}\}$
 - Heavy-quark spin symmetry (HQSS): $\{D, D^*\}, \{\bar{B}, \bar{B}^*\}$

Finite temperature

Thermal EFT for heavy mesons

Applications_____

Summary

Interaction between open heavy-flavor mesons and Goldstone bosons

Lagrangian at NLO in the chiral expansion and LO in the heavy-quark mass expansion:

 $\mathcal{L} = \mathcal{L}_{\rm LO} + \mathcal{L}_{\rm NLO}$

$$\mathcal{L}_{\rm LO} = \mathcal{L}_{\rm LO}^{\chi \rm PT} + \langle \nabla^{\mu} D \nabla_{\mu} D^{\dagger} \rangle - m_D^2 \langle D D^{\dagger} \rangle - \langle \nabla^{\mu} D^{*\nu} \nabla_{\mu} D_{\nu}^{*\dagger} \rangle + m_D^2 \langle D^{*\nu} D_{\nu}^{*\dagger} \rangle + \mathrm{i} g \langle D^{*\mu} u_{\mu} D^{\dagger} - D u^{\mu} D_{\mu}^{*\dagger} \rangle + \frac{g}{2m_D} \langle D_{\mu}^* u_{\alpha} \nabla_{\beta} D_{\nu}^{*\dagger} - \nabla_{\beta} D_{\mu}^* u_{\alpha} D_{\nu}^{*\dagger} \rangle \epsilon^{\mu\nu\alpha\beta}$$

 $\nabla_{\mu} D^{(*)} = \partial_{\mu} D^{(*)} - D^{(*)} \Gamma^{\mu}$ $\Gamma_{\mu} = \frac{1}{2} (u^{\dagger} \partial_{\mu} u + u \partial_{\mu} u^{\dagger})$ $u_{\mu} = i (u^{\dagger} \partial_{\mu} u - u \partial_{\mu} u^{\dagger})$ $u = \exp\left(\frac{\Phi}{\sqrt{2}f_{\pi}}\right)$

$$D = (D^{0} D^{+} D_{s}^{+})$$

$$D_{\mu}^{*} = (D^{*0} D^{*+} D_{s}^{*+})_{\mu}$$

$$\Phi = \begin{pmatrix} \frac{1}{\sqrt{2}} \pi^{0} + \frac{1}{\sqrt{6}} \eta & \pi^{+} & K^{+} \\ \pi^{-} & -\frac{1}{\sqrt{2}} \pi^{0} + \frac{1}{\sqrt{6}} \eta & K^{0} \\ K^{-} & \bar{K}^{0} & -\sqrt{\frac{2}{3}} \eta \end{pmatrix}$$

$$D_i$$
 D_j
 Φ_i Φ_j

 $\chi = \operatorname{diag}(m_{\pi}^2, m_{\pi}^2, 2m_K^2 - m_{\pi}^2)$ $\chi_+ = u^{\dagger}\chi u^{\dagger} + u\chi u$

LECs :
$$h_{0,...,5}, \tilde{h}_{0,...,5}$$

[Liu, Orginos, Guo, Hanhart and Meißner (2013)]

[Tolos and Torres-Rincon (2013)]

[Albaladejo, Fernandez-Soler, Guo and Nieves (2017)]

[Guo, Liu, Meißner, Oller and Rusetsky (2019)]

$$\begin{aligned} \mathcal{L}_{\mathrm{NLO}} &= \mathcal{L}_{\mathrm{NLO}}^{\chi\mathrm{PT}} - h_0 \langle DD^{\dagger} \rangle \langle \chi_+ \rangle + h_1 \langle D\chi_+ D^{\dagger} \rangle + h_2 \langle DD^{\dagger} \rangle \langle u^{\mu} u_{\mu} \rangle + h_3 \langle Du^{\mu} u_{\mu} D^{\dagger} \rangle \\ &+ h_4 \langle \nabla_{\mu} D \nabla_{\nu} D^{\dagger} \rangle \langle u^{\mu} u^{\nu} \rangle + h_5 \langle \nabla_{\mu} D \{u^{\mu}, u^{\nu} \} \nabla_{\nu} D^{\dagger} \rangle \\ &+ \tilde{h}_0 \langle D^{*\mu} D_{\mu}^{*\dagger} \rangle \langle \chi_+ \rangle - \tilde{h}_1 \langle D^{*\mu} \chi_+ D_{\mu}^{*\dagger} \rangle - \tilde{h}_2 \langle D^{*\mu} D_{\mu}^{*\dagger} \rangle \langle u^{\nu} u_{\nu} \rangle - \tilde{h}_3 \langle D^{*\mu} u^{\nu} u_{\nu} D_{\mu}^{*\dagger} \rangle \\ &- \tilde{h}_4 \langle \nabla_{\mu} D^{*\alpha} \nabla_{\nu} D_{\alpha}^{*\dagger} \rangle \langle u^{\mu} u^{\nu} \rangle - \tilde{h}_5 \langle \nabla_{\mu} D^{*\alpha} \{u^{\mu}, u^{\nu} \} \nabla_{\nu} D_{\alpha}^{*\dagger} \rangle \end{aligned}$$

Interaction between open heavy-flavor mesons and Goldstone bosons

Tree-level scattering amplitude:

$$V^{ij}(s,t,u) = \frac{1}{f_{\pi}^2} \Big[\frac{C_{\rm LO}^{ij}}{4} (s-u) - 4C_0^{ij}h_0 + 2C_1^{ij}h_1 \\ - 2C_{24}^{ij} \Big(2h_2(p_2 \cdot p_4) + h_4 \big((p_1 \cdot p_2)(p_3 \cdot p_4) + (p_1 \cdot p_4)(p_2 \cdot p_3) \big) \Big) \\ + 2C_{35}^{ij} \Big(h_3(p_2 \cdot p_4) + h_5 \big((p_1 \cdot p_2)(p_3 \cdot p_4) + (p_1 \cdot p_4)(p_2 \cdot p_3) \big) \Big) \Big]$$

C_k^{ij} isospin coefficients

LECs fitted to lattice QCD data

[Guo, Liu, Meißner, Oller and Rusetsky (2019)]

Preliminary results for $D\pi$ and DK from femtoscopy from ALICE $pp, \sqrt{s} = 13 \text{ TeV}$ at high multiplicity (2022)

At LO in HQSFS:
$$h_{0,...,5} = \tilde{h}_{0,...,5}$$
, $\frac{h_{0,...,3}^B}{\hat{M}_B} = \frac{h_{0,...,3}^D}{\hat{M}_D}$, $h_{4,5}^B \hat{M}_B = h_{4,5}^D \hat{M}_D$

Unitarization. Dynamically generated states

On-shell Bethe-Salpeter equation in coupled channels

regularized with a momentum cut-off $|ec{q}| \leq \Lambda$

- Leads to the dynamical generation of states: poles in the complex-energy plane
- Classification: **bound states** (RS-I), **resonances** (RS-II), and **virtual states** (RS-II)
- Properties of the dynamically generated states:
 - Mass $M_R = \operatorname{Re} \sqrt{s_p}$
 - Width $\Gamma_R = 2 \mathrm{Im} \sqrt{s_p}$
 - Coupling constants to the different channels g_i
 - Compositeness $\chi_i = \left| g_i \frac{\partial G_i(s_p)}{\partial s} \right|$

2200

2000

2100

2300

E [MeV]

2400

2500

2600

Summary

Results. Dynamically generated states in the charm sector

2700	1 1 1		$D_0^*(2300$)):	M = 23	$343 \pm 10 \mathrm{MeV}$)	(S, I)	Channels	Threshold	Channels	Threshold
2600 -	$D_1^*(2430)$	-	$I(J^P)$	$=\frac{1}{-1}(0^+)$	$\Gamma = 229$	$0 \pm 16 \mathrm{MeV}$			$(J^P = 0^+)$	(MeV)	$(J^P = 1^+)$	(MeV)
2500		(0460)	(-)	2				(-1, 0)	$Dar{K}$	2364.88	$D^* \bar{K}$	2504.20
2500-	$D_0^*(2300)$ $D_{s_1}^*(2300)$	2460)	D^{*} (201	- \+				(-1, 1)	$Dar{K}$	2364.88	$D^*\bar{K}$	2504.20
2400	D* (9317)	-	$D_{s0}^{+}(231)$	7)+:	M = 23	$17.8 \pm 0.5 \text{ MeV}$		$(0, \frac{1}{2})$	$D\pi$	2005.28	$D^*\pi$	2146.59
<u>Z</u> 2300-	$D_{s_0}(2317)$	-	$I(J^P)$	$=0(0^{+})$	$\Gamma < 3.8$	${ m MeV}$	\mathcal{I}		$D\eta$	2415.10	$D^*\eta$	2556.42
<u> </u>									$D_s \bar{K}$	2463.98	$D_s^* \bar{K}$	2607.84
[Me]	π	D*	$D_1(2430$	$))^{0}:_{1}$	M = 24	$12 \pm 9 \mathrm{MeV}$		$(0, \frac{3}{2})$	$D\pi$	2005.28	$D^*\pi$	2146.59
ξ 2100−	π –	-	$I(J^P)$	$=\frac{1}{2}(1^+)$	$\Gamma = 314$	$4\pm29~{ m MeV}$	×	(1,0)	DK	2364.88	D^*K	2504.20
2000 -	D_s D^*	-		2					$D_s\eta$	2516.20	$D_s^*\eta$	2660.06
1000	↓ —		$D_{s1}(246$	$(0)^{\pm}:$	M = 243	$59.6 \pm 0.6 \text{ MeV}$		(1,1)	$D_s\pi$	2106.38	$D_s^*\pi$	2250.24
1900	D		$I(I^P)$	$= 0(1^+)$	$\Gamma < 3.5$	MeV			DK	2364.88	D^*K	2504.20
1800	(0,0) $(0,1)$ $(1,0)$ $(1,0)$	1)	1(0)	0(1)	1 (0.0			$(2, \frac{1}{2})$	$D_s K$	2463.98	D_s^*K	2607.84
	(0,0) $(0,1)$ $(1,0)$ (1)	, 1)				[DDC (2020)]	1		_		0	
	(0,0) (0,1) (1,0) (1)	, 1)				[PDG (2020)]		T			DŪ
Poles	(0,0) (0,1) (1,0) (1 (<i>J</i> , <i>S</i>) of the unitarized	scatteri	ng amplitu	de:		[PDG (2020)]			$D\pi$	<i>Dη</i>	$D_s \bar{K}$
Poles	of the unitarized	$\frac{(S,I)}{(S,I)}$	ng amplitu	de: M_R	$\Gamma_R/2$	[PDG (2020)	χ _i	_	250		$D\eta$ \rightarrow $D\pi$	$D_s \bar{K}$
Poles	of the unitarized	$\frac{\text{scatterin}}{(S,I)}$	ng amplitu RS	$\frac{de:}{\binom{M_R}{(\mathrm{MeV})}}$	$\Gamma_R/2$ (MeV)	[PDG (2020)] $ g_i $ (GeV)	χ _i	_	250		$D\eta$ $D\pi$ $D\eta$ $D\eta$	$D_s\bar{K}$
Poles	of the unitarized $\overline{D_0^*(2300)}$	$\frac{\text{scatterin}}{(S,I)}$	ng amplitu RS $(-,+,+)$	$\frac{M_R}{(\text{MeV})}$ 2081.9	$\frac{\Gamma_R/2}{(\text{MeV})}$ 86.0	[PDG (2020) $ g_i $ (GeV) $ g_{D\pi} = 8.9$	χ_i $\chi_{D\pi} = 0.45$	-	250 200		$D\eta$ $D\pi$ $D\pi$ $D\eta$ $-D_{s}\bar{K}$	
Poles	of the unitarized $D_0^*(2300)$	$\frac{\text{scatterin}}{(S,I)}$	ng amplitu RS $(-,+,+)$	de: $\frac{M_R}{(\text{MeV})}$ 2081.9	$\frac{\Gamma_R/2}{(\text{MeV})}$ 86.0	[PDG (2020) $ g_i $ (GeV) $ g_{D\pi} = 8.9$ $ g_{D\eta} = 0.4$	χ_i $\chi_{D\pi} = 0.45$ $\chi_{D\eta} = 0.00$	-	250 200 0 0 150		$D\eta$ $D\pi$ $D\pi$ $D\eta$ $D\eta$ $D\eta$	
Poles Two-po	of the unitarized $\overline{D_0^*(2300)}$	$\frac{\text{scatterin}}{(S,I)}$	ng amplitu RS (-,+,+)	de: <u>M_R</u> (MeV) 2081.9	$\frac{\Gamma_R/2}{(\text{MeV})}$ 86.0	$\begin{array}{c} g_i \\ (\text{GeV}) \\ \hline g_{D\pi} = 8.9 \\ g_{D\eta} = 0.4 \\ g_{D_s\bar{K}} = 5.4 \end{array}$	χ_i $\chi_{D\pi} = 0.45$ $\chi_{D\eta} = 0.00$ $\chi_{D_s\bar{K}} = 0.02$	-	250 200 0 150		$D\eta$ $D\pi$ $D\eta$ $-D_s\bar{K}$	
Poles Two-po structu	of the unitarized solution $D_0^*(2300)$	$\frac{\text{scatterin}}{(S,I)}$	ng amplitu RS $(-,+,+)$ $(-,-,+)$	de: M_R (MeV) 2081.9 2529.3	$\Gamma_R/2$ (MeV) 86.0 145.4	$\begin{array}{c} g_i \\ (\text{GeV}) \\ \hline g_{D\pi} = 8.9 \\ g_{D\eta} = 0.4 \\ g_{D_s\bar{K}} = 5.4 \\ g_{D\pi} = 6.7 \end{array}$	χ_i $\chi_{D\pi} = 0.45$ $\chi_{D\eta} = 0.00$ $\chi_{D_s \bar{K}} = 0.02$ $\chi_{D\pi} = 0.20$	-	250 200 00 150 <i>L</i>		$D\eta$ $D\pi$ $D\eta$ $D\eta$ $Ds\bar{K}$	
Poles Two-po structu	of the unitarized solution of the unitarized solution $D_0^*(2300)$	$\frac{\text{scatterin}}{(S,I)}$	ng amplitu RS $(-,+,+)$ $(-,-,+)$	de: M_R (MeV) 2081.9 2529.3	$\frac{\Gamma_R/2}{(\text{MeV})}$ 86.0 145.4	$\begin{array}{c} g_i \\ (\text{GeV}) \\ \hline g_{D\pi} = 8.9 \\ g_{D\eta} = 0.4 \\ g_{D_s\bar{K}} = 5.4 \\ g_{D\pi} = 6.7 \\ g_{D\eta} = 9.9 \end{array}$	χ_{i} $\chi_{D\pi} = 0.45$ $\chi_{D\eta} = 0.00$ $\chi_{D_{s}\bar{K}} = 0.02$ $\chi_{D\pi} = 0.20$ $\chi_{D\eta} = 0.55$	-	L 250 200 L 150 L 100 L 100 L 100		$D\eta$ $D\pi$ $D\eta$ $D_{s}\bar{K}$	D _s \bar{K}
Poles Two-po structu	of the unitarized solution of the unitarized solutic dotted solution of the unitarized solution of th	scatterin (S, I) $(0, \frac{1}{2})$	ng amplitu RS $(-,+,+)$ $(-,-,+)$	de: <u>M_R</u> (MeV) 2081.9 2529.3	$\frac{\Gamma_R/2}{(\text{MeV})}$ 86.0 145.4	$\begin{array}{c} g_i \\ (\text{GeV}) \\ \hline g_{D\pi} = 8.9 \\ g_{D\eta} = 0.4 \\ g_{Ds\bar{K}} = 5.4 \\ g_{D\pi} = 6.7 \\ g_{D\eta} = 9.9 \\ \hline g_{Ds\bar{K}} = 19.4 \end{array}$	χ_{i} $\chi_{D\pi} = 0.45$ $\chi_{D\eta} = 0.00$ $\chi_{D_{s}\bar{K}} = 0.02$ $\chi_{D\pi} = 0.20$ $\chi_{D\eta} = 0.55$ $\chi_{D_{s}\bar{K}} = 0.95$		$[MeV^0]$		$D\eta$ $D\pi$ $D\eta$ $D\eta$ $D_{s}\bar{K}$	D_s K
Poles Two-po structu Bour	of the unitarized solution of the unitarized solutic dotted solution of the unitarized solution of th	scatterin (S, I) ($0, \frac{1}{2}$) ($1, 0$)	ng amplitu RS (-,+,+) (-,-,+) (+,+)	de: M_R (MeV) 2081.9 2529.3 2252.5	$\Gamma_R/2$ (MeV) 86.0 145.4 0.0	$\begin{array}{c} g_i \\ (\text{GeV}) \\ g_{D\pi} = 8.9 \\ g_{D\eta} = 0.4 \\ g_{D_s\bar{K}} = 5.4 \\ g_{D\pi} = 6.7 \\ g_{D\eta} = 9.9 \\ \hline g_{D_s\bar{K}} = 19.4 \\ g_{DK} = 13.3 \end{array}$	χ_{i} $\chi_{D\pi} = 0.45$ $\chi_{D\eta} = 0.00$ $\chi_{D_{s}\bar{K}} = 0.02$ $\chi_{D\pi} = 0.20$ $\chi_{D\eta} = 0.55$ $\chi_{D_{s}\bar{K}} = 0.95$ $\chi_{DK} = 0.44$		250 200 200 150 150 100 100 100 50		$D\eta$ $D\pi$ $D\eta$ $D\eta$ $D\eta$ $D\eta$	D_s K

Summar

Results. Dynamically generated states in the charm sector

2700			$D_0^*(2300$)):	M = 23	$343 \pm 10 \mathrm{MeV}$)	(S, I)	Channels	Threshold	Channels	Threshold
2600 -	$D_1^*(2430)$	-	$I(J^P)$	$=\frac{1}{-}(0^+)$	$\Gamma = 229$	$0 \pm 16 \mathrm{MeV}$			$(J^P = 0^+)$	(MeV)	$(J^P = 1^+)$	(MeV)
2500 - 5*	D* (2460)		2				(-1, 0)	$D\bar{K}$	2364.88	$D^*\bar{K}$	2504.20
$2500 D_0^*$	$S(2300)$ $D_{s_1}(2300)$	2400)	D* (991	$7)\pm$	14 99	179 05 M-V		(-1, 1)	$D\bar{K}$	2364.88	$D^*\bar{K}$	2504.20
2400 -	$D^{*}(2317)$	-	$D_{s0}(231$	() ⁻ :	M = 23	17.8 ± 0.5 MeV		$(0, \frac{1}{2})$	$D\pi$	2005.28	$D^*\pi$	2146.59
<u>≥</u> 2300 -		-	$I(J^{T})$	$= 0(0^{+})$	$\Gamma < 3.8$	MeV			$D\eta$	2415.10	$D^*\eta$	2556.42
2200-							\mathbf{X}		$D_s \bar{K}$	2463.98	$D_s^*ar{K}$	2607.84
Me Me	π L)* s	$D_1(2430)$	$())^{0}:$	M = 24	$112 \pm 9 \mathrm{MeV}$		$(0, \frac{3}{2})$	$D\pi$	2005.28	$D^*\pi$	2146.59
£ 2100−	π	_ 1	$I(J^P)$	$=\frac{1}{2}(1^{+})$	$\Gamma = 314$	$4 \pm 29 \mathrm{MeV}$		(1, 0)	DK	2364.88	D^*K	2504.20
2000 -	D_s	-							$D_s\eta$	2516.20	$D_s^*\eta$	2660.06
1900 -	↓ D	_	$D_{s1}(246)$	$(50)^{\pm}:$	M = 24	$59.6 \pm 0.6 \text{ MeV}$		(1, 1)	$D_s\pi$	2106.38	$D_s^*\pi$	2250.24
1000	<u> </u>		$I(J^P)$	$= 0(1^+)$	$\Gamma < 3.5$	MeV	\$	(2.1)	DK	2364.88	D^*K	2504.20
1800 ((0,0) $(0,1)$ $(1,0)$ $(1,$	1)				[PDG (2020) ⁻	1	$(2, \frac{1}{2})$	$D_s K$	2463.98	D_s^*K	2607.84
Doloo of	(J, S)	oottori	na omplitu	da		_ , , ,	-			$D^*\pi$	Ι	$D^*\eta \ D^*_{\circ}\bar{K}$
Fules u		scattern	ng ampiltu	ue.					250			
		(S, I)	\mathbf{RS}	M_R	$\Gamma_R/2$	$ g_i $	χ_i			\wedge	$D^*\pi$	
				(MeV)	(MeV)	(GeV)		_	200 -		$ \sum_{n=1}^{\infty} \frac{D^n \eta}{D_s^* \bar{K}} $	
	$D_1(2430)$	$(0, \frac{1}{2})$	(-,+,+)	2222.3	84.7	$ g_{D^*\pi} = 9.5$	$\chi_{D^*\pi} = 0.45$		- -			
						$ g_{D^*\eta} = 0.4$	$\chi_{D^*\eta} = 0.00$		∧a 150 -			
Two-pole						$ a_{D*\bar{K}} = 5.7$	$v_{\rm D}, \bar{x} = 0.02$					
structure	~					$ JD_sK $	$\lambda D_s^* K = 0.02$		Ť			
	{		(-, -, +)	2654.6	117.3	$ g_{D^*\pi} = 6.5$	$\chi_{D^*\pi} = 0.02$ $\chi_{D^*\pi} = 0.17$		$\overset{i}{L}_{100}$			
			(-, -, +)	2654.6	117.3	$ g_{D^*\pi} = 6.5$ $ g_{D^*\eta} = 10.0$	$\chi_{D_s^*K} = 0.02$ $\chi_{D^*\pi} = 0.17$ $\chi_{D^*\eta} = 0.54$		$- \lim_{i \to i} T_{i \to i}$			
			(-,-,+)	2654.6	117.3	$ g_{D^*\pi} = 6.5$ $ g_{D^*\eta} = 10.0$ $ g_{D^*\bar{K}} = 18.5$	$\chi_{D_s^*K} = 0.02$ $\chi_{D^*\pi} = 0.17$ $\chi_{D^*\eta} = 0.54$ $\chi_{D_s^*\bar{K}} = 0.90$					
Bound	$D_{s1}(2460)$	(1,0)	(-, -, +) (+, +)	2654.6 2393.3	0.0	$\begin{aligned} g_{D^*\pi} &= 6.5 \\ g_{D^*\eta} &= 10.0 \\ g_{D^*\bar{K}} &= 18.5 \\ g_{D^*\bar{K}} &= 14.2 \end{aligned}$	$\chi_{D_{s}^{*}K} = 0.02$ $\chi_{D^{*}\pi} = 0.17$ $\chi_{D^{*}\eta} = 0.54$ $\chi_{D_{s}^{*}\bar{K}} = 0.90$ $\chi_{D^{*}K} = 0.45$					
Bound state	$\begin{bmatrix} & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ $	(1, 0)	(-, -, +) (+, +)	2654.6 2393.3	0.0	$\begin{aligned} g_{D^*\pi} &= 6.5 \\ g_{D^*\eta} &= 10.0 \\ g_{D^*\bar{K}} &= 18.5 \\ g_{D^*K} &= 14.2 \\ g_{D^*s\eta} &= 9.7 \end{aligned}$	$\chi_{D_s^*K} = 0.02$ $\chi_{D^*\pi} = 0.17$ $\chi_{D^*\eta} = 0.54$ $\chi_{D_s^*\bar{K}} = 0.90$ $\chi_{D^*K} = 0.45$ $\chi_{D_s^*\eta} = 0.08$					
Bound state	sons in a hot mesonic b	(1,0)	(-,-,+) (+,+) ia Montaña - O	2654.6 2393.3 NP 2022 - S	117.3 0.0	$\begin{aligned} g_{D^*\pi} &= 6.5 \\ g_{D^*\eta} &= 10.0 \\ g_{D^*\bar{K}} &= 18.5 \\ g_{D^*K} &= 14.2 \\ g_{D^*s\eta} &= 9.7 \end{aligned}$	$\chi D_{s}^{*} K = 0.02$ $\chi D^{*} \pi = 0.17$ $\chi D^{*} \eta = 0.54$ $\chi D_{s}^{*} \bar{K} = 0.90$ $\chi D^{*} K = 0.45$ $\chi D_{s}^{*} \eta = 0.08$.00 2200 230	00 2400 2500	2600 2700

QCD phase diagram. Finite temperature and vanishing baryon density

Theoretical tools to study QCD matter at high temperatures

- Perturbative theories (very high temperatures)
- Lattice QCD
- Non-perturbative effective hadronic theories (below transition temperature T_c)

Applications

Heavy flavor

- Heavy quarks are created in the initial stage of the collision
- Due to its large mass and relaxation time, heavy-flavor mesons are a powerful probe of the QGP
- The properties of heavy mesons, i.e., masses and decay widths, are modified in hot matter
- Understanding phenomena such as quarkonia suppression

Mesonic bath in equilibrium at finite temperature

- Mesonic matter at temperature $0 < T < T_c$ and vanishing baryon density (matter produced in RHIC & LHC)
- Pions are the most abundant (lightest particles)
- Heavy mesons behave as Brownian particles scattering off the light mesons
- New processes are available: **production** and **absorption** of thermal mesons

Thermal effective theory for open heavy-flavor mesons

- Thermal scattering amplitudes
- Thermal spectral functions
- temperature evolution of the dynamically generated states
- temperature evolution of the ground states

Summary

Thermal effective theory for open heavy-flavor mesons

Imaginary time formalism

- Sum over Matsubara frequencies $q^0 \to i \omega_n = i \frac{2n\pi}{\beta}$ (bosons) $\int \frac{d^4q}{(2\pi)^4} \to \frac{1}{\beta} \sum_n \int \frac{d^3q}{(2\pi)^3}$
 - Thermal production and absorption processes weighted by Bose-Einstein distribution functions $f(\omega, T) = \frac{1}{e^{\omega/T} 1}$

Dressing of the mesons in the loop functions with their spectral functions

- Self-energy corrections to the heavy meson propagator
- Pion mass slightly varies below $T_c \longrightarrow$ Approximation: only the heavy meson is dressed

Loop function

$$G_{D\Phi}(E, \vec{p}; T) = \int \frac{d^3q}{(2\pi)^3} \int d\omega \int d\omega' \frac{S_D(\omega, \vec{q}; T)S_{\Phi}(\omega', \vec{p} - \vec{q}; T)}{E - \omega - \omega' + i\varepsilon} [1 + f(\omega, T) + f(\omega', T)]$$
Regularized with a cut-of
Unitarized amplitude

$$T_{ij} = V_{ij} + V_{ik}\overline{G_k}T_{kj}$$

$$T_{ij} =$$

Summary

Results: spectral functions and scattering amplitudes

[GM, A. Ramos, L. Tolos, J.M. Torres-Rincon, *Phys. Lett. B 806* (2020) 135464] [GM, A. Ramos, L. Tolos, J.M. Torres-Rincon, *Phys. Rev. D 102* (2020) 9, 096020]

•

•

Summary

Results: thermal evolution of masses and widths

[GM, A. Ramos, L. Tolos, J.M. Torres-Rincon, *Phys. Lett. B 806* (2020) 135464] [GM, A. Ramos, L. Tolos, J.M. Torres-Rincon, *Phys. Rev. D 102* (2020) 9, 096020]

We have also investigated the thermal modification of D^* , \bar{B} , \bar{B}^* mesons

Applications

Euclidean correlators

- Euclidean correlators are directly accessible in lattice QCD simulations
- Meson spectral functions are related to meson temporal Euclidean correlators

$$G_E(\tau, \vec{p}; T) = \int_0^\infty d\omega \, K(\tau, \omega; T) \, \rho(\omega, \vec{p}; T) \qquad \begin{cases} \text{Spectral function} \quad \rho(\omega; T) \\ K(\tau, \omega; T) = \frac{\cosh\left[\omega\left(\tau - \frac{1}{2T}\right)\right]}{\sinh\left(\frac{\omega}{2T}\right)} \end{cases}$$

Euclidean correlator \longrightarrow Spectral function (ill-posed) Spectral function \longrightarrow Euclidean correlator

We can obtain the ground-state spectral function (at unphysical meson masses)

Summary

Euclidean correlators: results and comparison with LQCD

[GM, O. Kaczmarek, L. Tolos, A. Ramos, Eur.Phys.J.A 56 (2020) 11] [Kelly, Rothkopf, Skullerud (2018)]

- Good agreement at the lowest temperature $(0.76 T_c)$ ٠
- Deviation at larger T: excited states? Kaonic bath? •
- Above T_c the EFT breaks down (QGP)

 $\rightarrow \frac{G_E(\tau;T)}{G_{E}^r(\tau;T_{T},T_{T})}$

Transport coefficients of an off-shell heavy meson

Fokker-Planck equation for the Green's function

$$\frac{\partial}{\partial t} \mathbf{i} \, G_D^<(t,k) = \frac{\partial}{\partial k^i} \left\{ \hat{A}(k;T) \mathbf{k}^i \, \mathbf{i} \, G_D^<(t,k) + \frac{\partial}{\partial k^j} \left[\hat{B}_0(k;T) \Delta^{ij} + \hat{B}_1(k;T) \mathbf{k}^{ikj} \right] \mathbf{i} \, G_D^<(t,k) \right\} \qquad \text{with} \quad \Delta^{ij} = \delta^{ij} - k^i k^j / \vec{k}^2$$

Off-shell transport coefficients

- Drag force coefficient
 - thermal average momentum transfer
- Momentum diffusion coefficients
 - average square of the momentum transfer

$$\hat{A}(k^0, \vec{k}; T) \equiv \left\langle 1 - \frac{\vec{k} \cdot \vec{k}_1}{\vec{k}^2} \right\rangle$$
$$\hat{B}_0(k^0, \vec{k}; T) \equiv \frac{1}{4} \left\langle \vec{k}_1^2 - \frac{(\vec{k} \cdot \vec{k}_1)^2}{\vec{k}^2} \right\rangle$$
$$\hat{B}_1(k^0, \vec{k}; T) \equiv \frac{1}{2} \left\langle \frac{[\vec{k} \cdot (\vec{k} - \vec{k}_1)]^2}{\vec{k}^2} \right\rangle$$

$$D,k$$
 D,k_1
 Φ,k_3 Φ,k_2

- Thermal effects in $|T|^2$ and E_k
- Landau cut contribution
- Off-shell effects

with

$$\left\langle \mathcal{F}(\vec{k},\vec{k}_{1}) \right\rangle = \frac{1}{2k^{0}} \sum_{\lambda,\lambda'=\pm} \lambda\lambda' \int_{-\infty}^{\infty} dk_{1}^{0} \int \prod_{i=1}^{3} \frac{d^{3}k_{i}}{(2\pi)^{3}} \frac{1}{2E_{2}2E_{3}} S_{D}(k_{1}^{0},\vec{k}_{1}) (2\pi)^{4} \delta^{(3)}(\vec{k}+\vec{k}_{3}-\vec{k}_{1}-\vec{k}_{2}) \\ \times \delta(k^{0}+\lambda'E_{3}-\lambda E_{2}-k_{1}^{0}) \left| T(k^{0}+\lambda'E_{3},\vec{k}+\vec{k}_{3}) \right|^{2} f^{(0)}(\lambda'E_{3})\tilde{f}^{(0)}(\lambda E_{2})\tilde{f}^{(0)}(k_{1}^{0}) \quad \mathcal{F}(\vec{k},\vec{k}_{1})$$

Results: drag force and momentum diffusion coefficient

[J.M. Torres-Rincon, GM, A. Ramos, L. Tolos, Phys.Rev.C 105 (2022)]

- Increase with temperature
- Vacuum vs Thermal U: Thermal effects in the amplitudes are small ٠
- **Thermal U** vs **Thermal U+L**: The Landau contribution is very important at finite T.
- Thermal U+L vs OffShell: Off-shell effects are small .
- The main contribution comes from the pions in the bath ٠

.

Summary

Comparison with other approaches

[J.M. Torres-Rincon, GM, A. Ramos, L. Tolos, Phys.Rev.C 105 (2022)]

Applications

Summary

• We have extended the EFT describing the scattering of open heavy-flavor mesons off light mesons to finite temperature in a self-consistent way.

- Thermal effects on heavy mesons: moderate decrease of the masses and substantial increase of the decay widths with T.
 Bath of pions provides the main contribution.
- Euclidean correlators computed from spectral functions at unphysical masses are in good agreement with lattice QCD below T_c . Discrepancies close to T_c possibly indicate the missing contribution of higher-excited states and the bath of kaons.
- We have computed heavy-meson transport coefficients below T_c from an off-shell kinetic theory including thermal effects.
 - The new contribution coming from the Landau cut of the loop function improves considerably the comparison with lattice QCD calculations and Bayesian analysis.

Backup slides

Results. Dynamically generated states in the bottom sector

Physical interpretation and cuts of the thermal propagator

$$\operatorname{Im} G_{D\Phi}(E, \vec{p}; T) = -\pi \int \frac{d^3q}{(2\pi)^3} \frac{1}{4\omega_D \omega_\Phi} \times \left\{ \underbrace{\left[(1 + f_D)(1 + f_{\Phi}) \right] - \underbrace{f_D f_{\Phi}}_{\Phi} \right] \delta(E - \omega_D - \omega_{\Phi})}_{+ \left[f_D f_{\Phi} - (1 + f_D)(1 + f_{\Phi}) \right] \delta(E + \omega_D - \omega_{\Phi})} + \underbrace{\left[f_D (1 + f_{\Phi}) - (1 + f_D) f_{\Phi} \right] \delta(E - \omega_D + \omega_{\Phi})}_{+ \left[(1 + f_D) f_{\Phi} - \underbrace{f_D (1 + f_{\Phi})}_{\Phi} \right] \delta(E - \omega_D + \omega_{\Phi})} \right\}$$
Branch cuts along the real energy axis:

$$\Lambda \rightarrow \infty$$

$$\operatorname{Im} E$$

$$\operatorname{Landau \, cut}_{|E| \leq (m_D + m_{\Phi})}$$
Re E

Results: thermal evolution of masses and widths (charmed vector mesons)

[GM, A. Ramos, L. Tolos, J.M. Torres-Rincon, *Phys. Lett. B 806* (2020) 135464] [GM, A. Ramos, L. Tolos, J.M. Torres-Rincon, *Phys. Rev. D 102* (2020) 9, 096020]

Pionic bath

Results: thermal evolution of masses and widths (bottomed mesons)

$$P = 0^{\pm}, 1^{\pm}$$

Euclidean correlators from effective field theories

We can obtain the ground-state spectral function at unphysically large meson masses (used in the lattice)

$$S_D(\omega, \vec{q}; T) = -\frac{1}{\pi} \operatorname{Im} \mathcal{D}_D(\omega, \vec{q}; T) = -\frac{1}{\pi} \operatorname{Im} \left(\frac{1}{\omega^2 - \vec{q}^2 - m_D^2 - \Pi_D(\omega, \vec{q}; T)} \right)$$

- Ground-state contribution $ho_{
 m gs}(\omega;T)\propto S_D(\omega;T)$
- Continuum of scattering states

[Karsch, Mustafa and Thoma (2001)] [Meyer, Ph.D. tesis (2016)]

$$\rho_{\text{cont}}(\omega;T) = \frac{N_c}{32\pi} \sqrt{\left(\frac{m_1^2 - m_2^2}{\omega^2} + 1\right)^2 - \frac{4m_2^2}{\omega^2}\omega^2} \\ \times \left[(a_M - b_M) + 2b_M \frac{m_1^2 + m_2^2}{\omega^2} - 4c_M \frac{m_1 m_2}{\omega^2} - (a_M + b_M) \left(\frac{m_1^2 - m_2^2}{\omega^2}\right)^2 \right] \\ \times \left[n(-\omega_0,T) - n(\omega - \omega_0,T) \right] \theta \left(\omega - (m_1 + m_2)\right)$$

Full spectral function: $\rho(\omega; T) = \rho_{gs}(\omega; T) + a \rho_{cont}(\omega; T)$ with a weight parameter $a = \{0, 1, 10\}$

Results: Spectral functions at unphysical meson masses

[GM, O. Kaczmarek, L. Tolos, A. Ramos, Eur.Phys.J.A 56 (2020) 11]

Lattice setup in *Kelly et al.* :

	$m_{\pi} \; ({\rm MeV})$	$m_K \ ({\rm MeV})$	$m_{\eta} \; ({\rm MeV})$	$m_D \ ({\rm MeV})$	$m_{D_s} \ ({\rm MeV})$
Lattice	384	546	589	1880	1943
Physical	138	496	548	1867	1968

[Kelly, Rothkopf, Skullerud (2018)]

Ground-state spectral functions using unphysical meson masses:

Results: drag force and momentum diffusion coefficient. CHARM vs BOTTOM

Comparison with other approaches. CHARM vs BOTTOM

Comparison with:

- Bayesian analysis of HICs
- Quasiparticle model

[W. Ke et al. Phys. Rev. C98, 064901 (2018)]

[S.K. Das, J.M. Torres-Rincon, L. Tolos (2018)]

