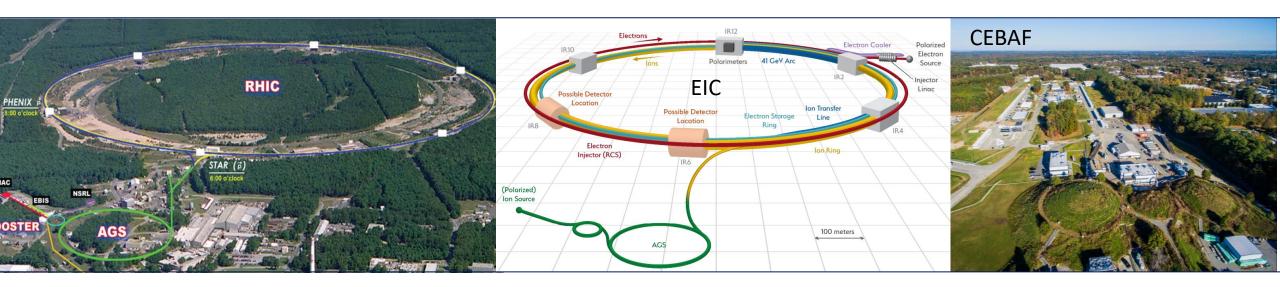
QNP2022 - THE 9TH INTERNATIONAL CONFERENCE ON QUARKS AND NUCLEAR PHYSICS, ONLINE / FLORIDA STATE UNIVERSITY

AI/ML for Streaming Readout

Jin Huang

Brookhaven National Lab

Experiments deploying streaming readout DAQs



Examples in focus of this talk: RHIC (PHENIX, sPHENIX), CEBAF (BDX, CLAS12), EIC (EPIC)

- This talk is an in-complete review of the field, see also experiments including at LHC (LHCb, ALICE, AMBER), at FAIR (CBM)
- Streaming Readout Workshop series: [link]
 - Talks in this session: Marco Battaglieri, Diana McSpadden

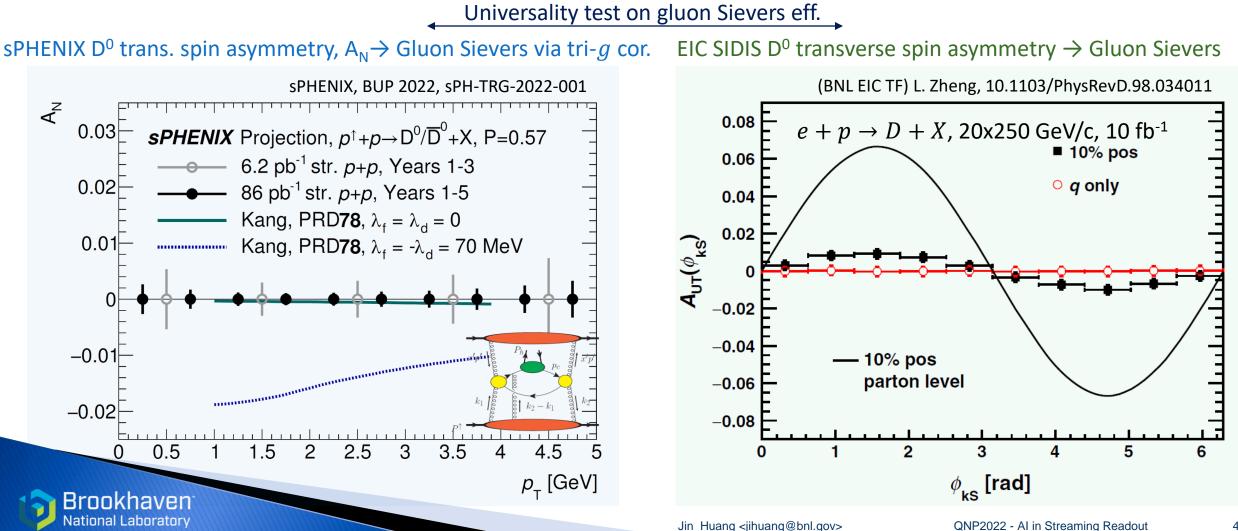
Nuclear collider experiments: unique real-time system challenges leads to streaming DAQ

	EIC	RHIC	LHC → HL-LHC
Collision species	$\vec{e} + \vec{p}, \vec{e} + A$	$\vec{p} + \vec{p}/A$, $A + A$	p + p/A, $A + A$
Top x-N C.M. energy	140 GeV	510 GeV	13 TeV
Bunch spacing	10 ns	100 ns	25 ns
Peak x-N luminosity	10 ³⁴ cm ⁻² s ⁻¹	10 ³² cm ⁻² s ⁻¹	$10^{34} \rightarrow 10^{35} \mathrm{cm}^{-2} \mathrm{s}^{-1}$
x-N cross section	50 μb	40 mb	80 mb
Top collision rate	500 kHz	10 MHz	1-6 GHz
dN _{ch} /dη in p+p/e+p	0.1-Few	~3	~6
Charged particle rate	4M N _{ch} /s	60M <i>N</i> _{ch} /s	30G+ <i>N</i> _{ch} /s

- Signal data rate is moderate \rightarrow possible to streaming recording all collision signal
- But events are precious and have diverse topology \rightarrow hard to trigger on all process
- Background and systematic control is crucial \rightarrow avoiding a trigger bias

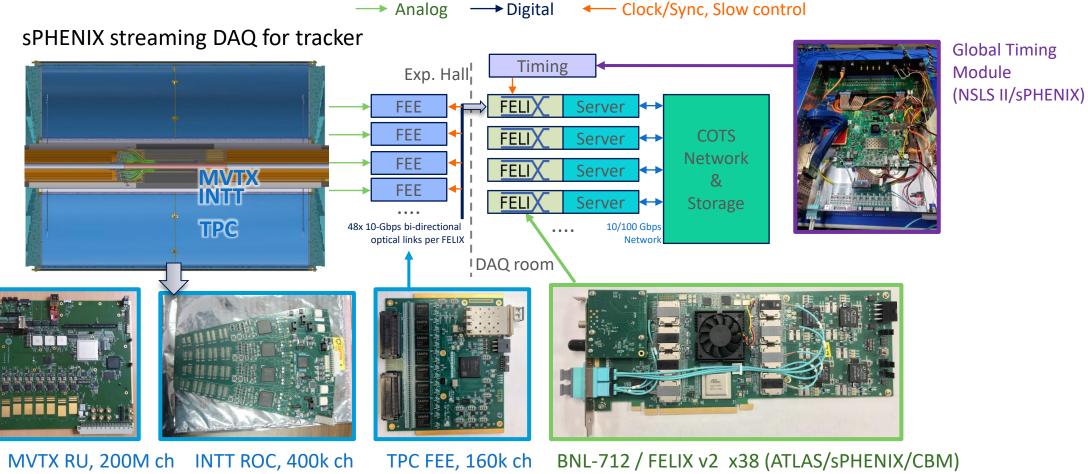
Brookhaven[®] National Laboratory

Physics only accessible with a streaming DAQ: e.g. low p_T HF in hadronic decay \rightarrow window to gluon dynamics



QNP2022 - AI in Streaming Readout

Streaming readout electronics: sPHENIX as example



ALPIDE (ALICE/SPHENIX), FPHX (PHENIX)

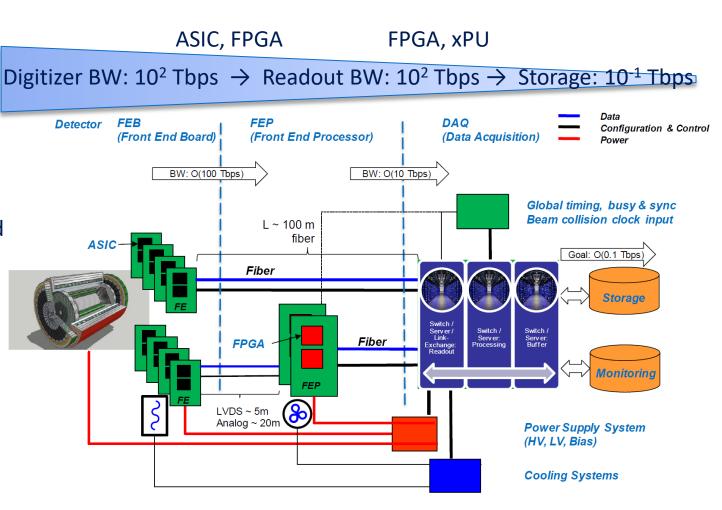
SAMPAv5 (ALICE/sPHENIX) FELIX Ref: <u>10.1109/tim.2019.2947972</u> Similar role as PICe40 in LHCb / ALICE

Brookhaven National Laboratory

Streaming readout data flow: EIC as example

EIC streaming DAQ

- → Triggerless readout front-end (buffer length : µs)
- → DAQ interface to commodity computing (FELIX as the candidate in all EIC
 - proposals)
 - Background filter if excessive background rate
- → Disk/tape storage of streaming time-framed zero-suppressed raw data (buffer length : s)
- →Online monitoring and calibration (latency : minutes)
- → Final Collision event tagging in offline production (latency : days+)



[EIC-CDR]

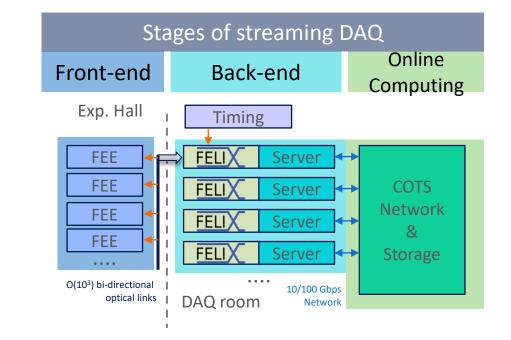
Al in streaming readout DAQ

Main challenge: data reduction

- Traditional DAQ: triggering was the main method of data reduction, assisted by high level triggering/reconstruction, compression
- Streaming DAQ need to reduce data computationally: zero-suppression, feature building, lossy compression

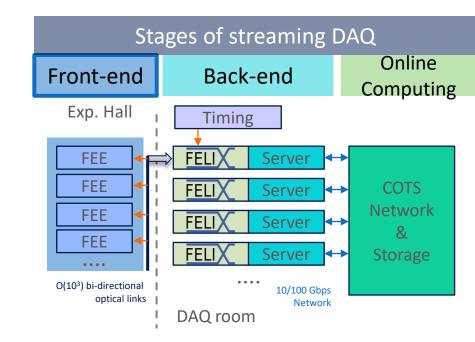
Opportunities for Real-time AI

- Emphasize on reliable data reduction, applicable at each stages of streaming DAQ: <u>Front-end</u> <u>electronics</u>, <u>Readout Back-end</u>, <u>Online computing</u>
- Data quality monitoring, fast calibration/reconstruction/ feedback
 - Also applicable to triggered DAQ.
 - Not focus of this talk, nonetheless important for streaming experiments



Streaming DAQ stage 1: Front-end electronics

- Perform digitization (ADC, TDC, pixel readout)
 - Common data reduction strategy to immediately apply zero-suppression
- Al opportunities:
 - Improved zero-suppression, e.g. small signal recovery
 - Feature building (example in next slides)
 - Compression (example in later slides)
- Target hardware: ASIC, (smaller) FPGAs
 - Common requirement of low-power consumption, radiation tolerant

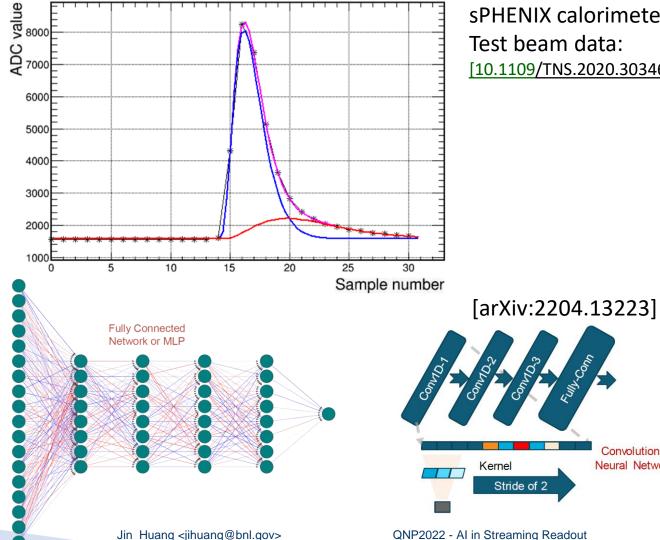


ADC time series \rightarrow feature of amplitude and time

- Wave form digitizer is popular, output data in ADC time series
- In the front-end, NN can be used to extra features such as amplitude and time of arrival
- Fit limited resource in FEE FPGA or ASIC: **Emphasizes on quantized**aware training training and pruning

Brookhaven

Laborator



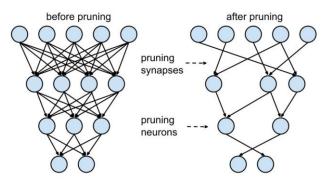
sPHENIX calorimeter Test beam data: [10.1109/TNS.2020.3034643]

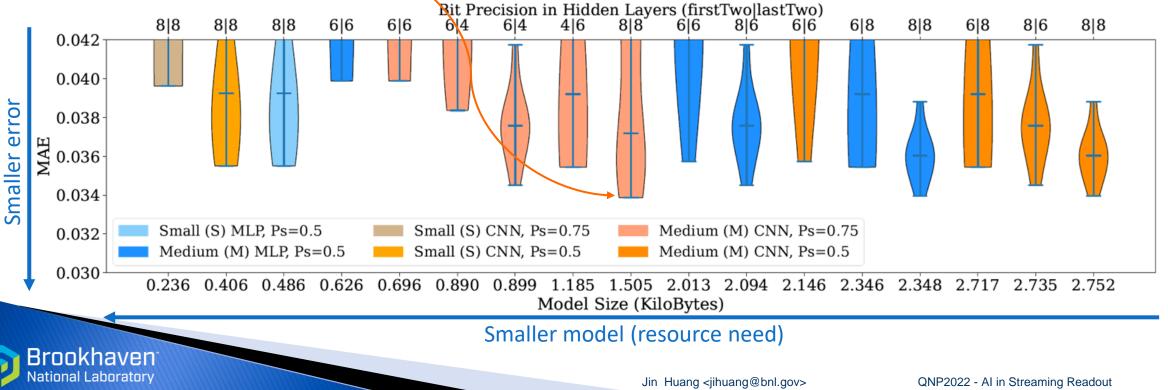
Convolutiona Neural Network

Pruning + Variable Bit Quantization-aware Training

[S. Miryala et al 2022 JINST 17 C01039]

- Simulated LGAD waveform data
- Highly pruned (sparsity=0.75) CNN with 8bit internal precision strikes good performance (smaller error) and small model size

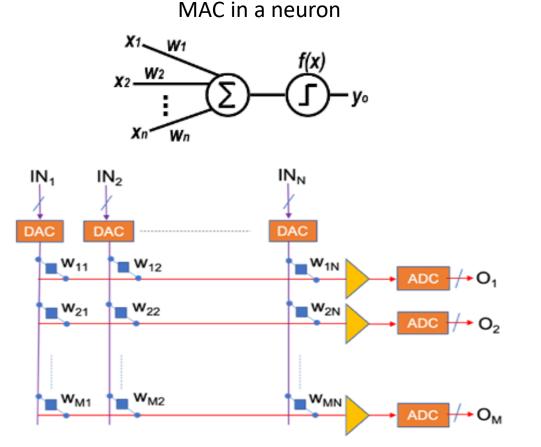




Novel hardware: in-memory computing

[S. Miryala , CPAD21, link]

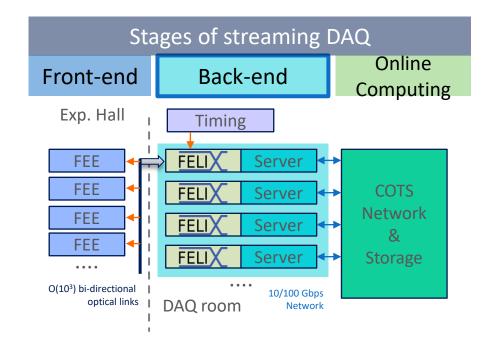
- Traditional AI-target hardware in FEE including digital processing in ASIC and FPGAs
- New opportunity emerges to perform in-memory computing that is low latency and energy efficient
- Example is Memristor-based crossbar arrays that perform Multiply & Accumulate (MAC) in one cycle



Memristor crossbar array, a Non-Von Neumann architecture for in-memory computing of neural networks

Streaming DAQ stage 2: Readout back-end

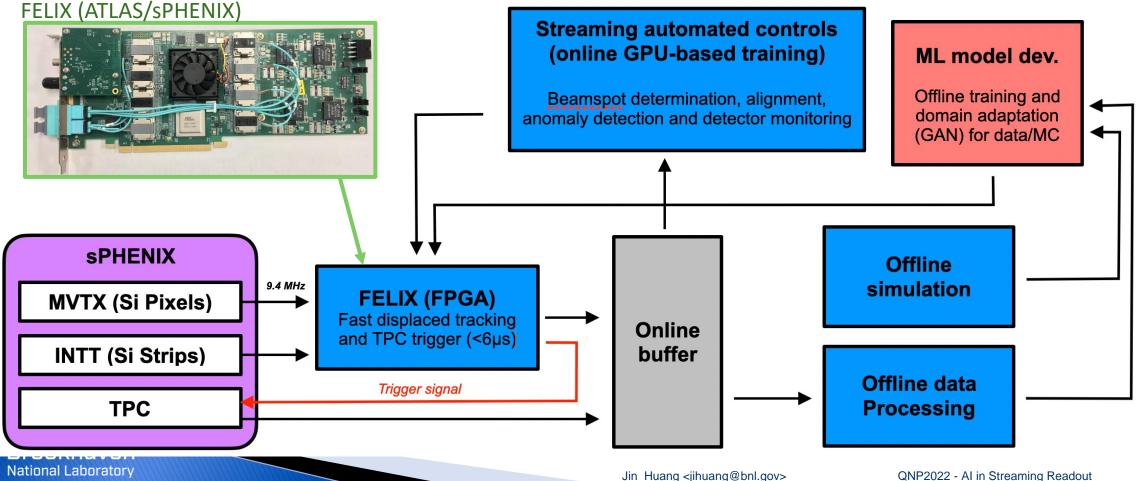
- Perform data aggregation and flow control
 - Common strategy include optical data receiver in large FPGA, routing data to server memory
- Al opportunities:
 - Higher level feature building
 - Selection of interesting time slices, background/noise rejection
 - Two example projects in next slides
- Target hardware: large-scale FPGAs



FPGA based data filter for sPHENIX and EIC

[Y. Corrales Morales, RHIC AUM 22, link]

DOE Funded project on streaming readout data reconstruction on FGPA, initiated by LANL, MIT, FNAL and NJIT



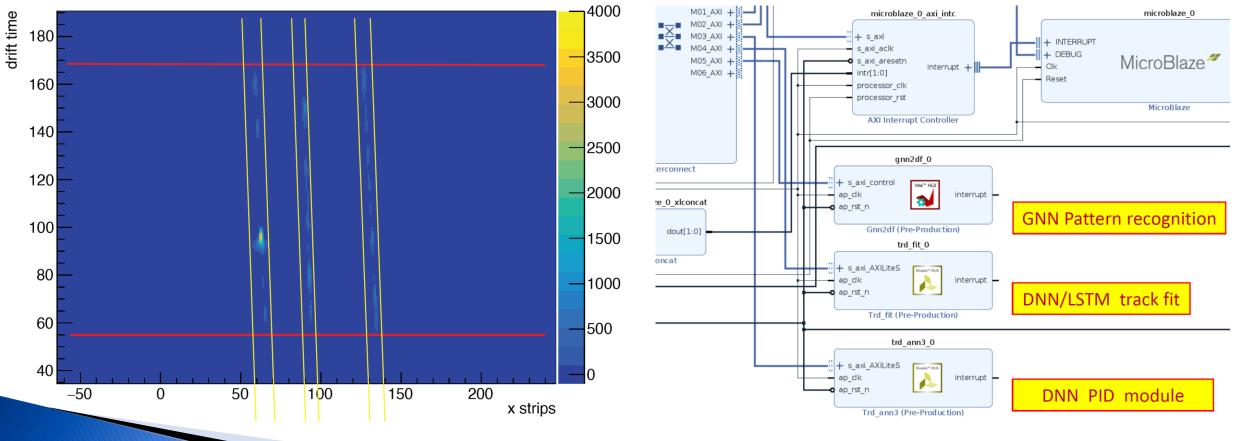
FPGA based data filter for sPHENIX and EIC

[Y. Corrales Morales, RHIC AUM 22, link]

Produce real-time selection of HF events: hit input \rightarrow clustering \rightarrow seeding \rightarrow trak reco \rightarrow displaced vertex tagger

Another example: GEM TRD tracking/PID

[S. Furletov, IEEE RT22, <u>link</u>]



GEM TRD tracks

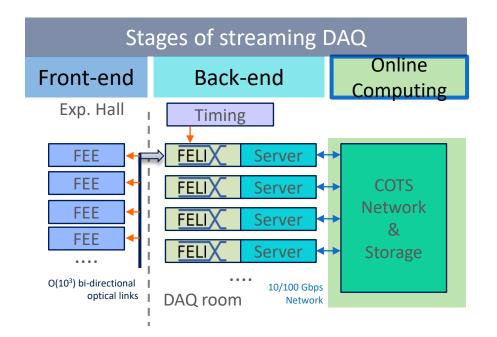
Brookhaven National Laboratory

Jin Huang <jihuang@bnl.gov>

GNN Pattern reco, track fit and PID on FPGA test bench

Streaming DAQ stage 3: Online computing

- Online computing is an integral part of streaming DAQ
 - Blending the boundary of online/offline computing
- Al opportunities:
 - Lossy compression
 - Noise and background filtering
 - Higher level reconstruction
- Target hardware:
 - Traditional computing: CPU, GPU
 - Novel AI Accelerators (next slides)

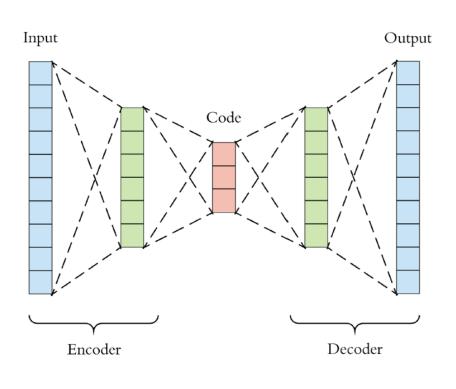


Brookhaven National Laboratory

Lossy compression of data, noise filtering

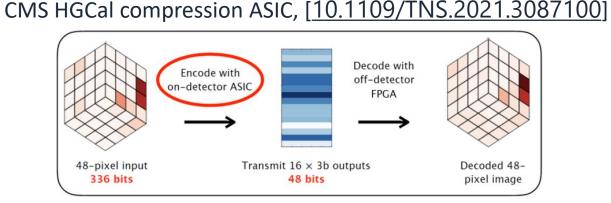
 Auto-encoder (AE) is a natural choice for unsupervised learning for lossy data compression: streaming data reduction

Simple auto-encode neural network

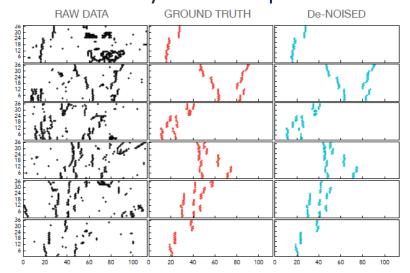


Lossy compression of data, noise filtering

- Auto-encoder (AE) is a natural choice for unsupervised learning for lossy data compression: streaming data reduction
- Same network architecture can be adopted with supervised learning to filter out noise: further data reduction, speed up reconstruction
- See also in CMS HGCal ASIC, CLAS12 tracker offline reco.



tional Laboratory



Data of time projection tracker at sPHENIX

30

Busiest event in sPHENIX TPC

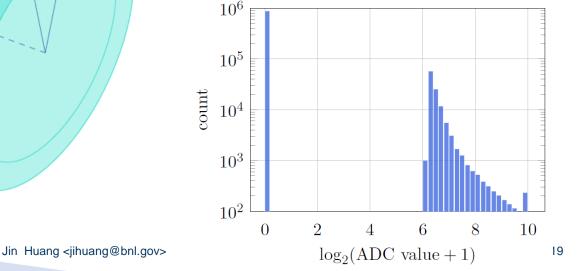
Brookhaven

Laboratory

3D X-Y-Time time frame at 50Tbps prior to zero-suppression

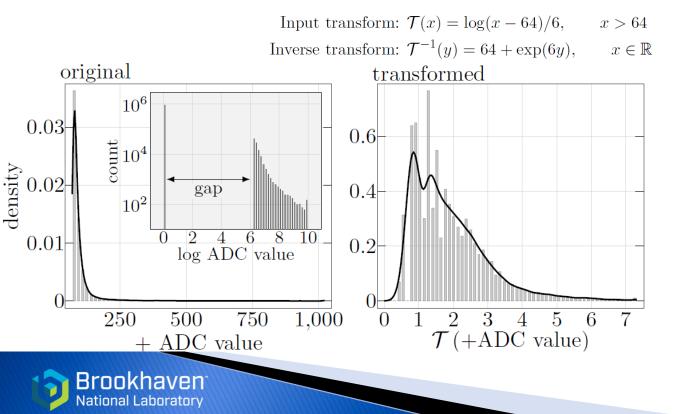
10% central Au + Au collision with 170kHz pile up

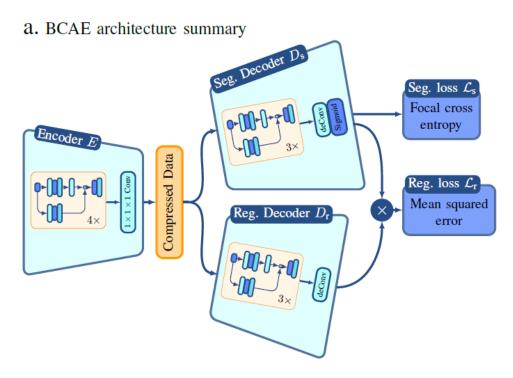
Data frame for 1/12 azimuth sector shown here



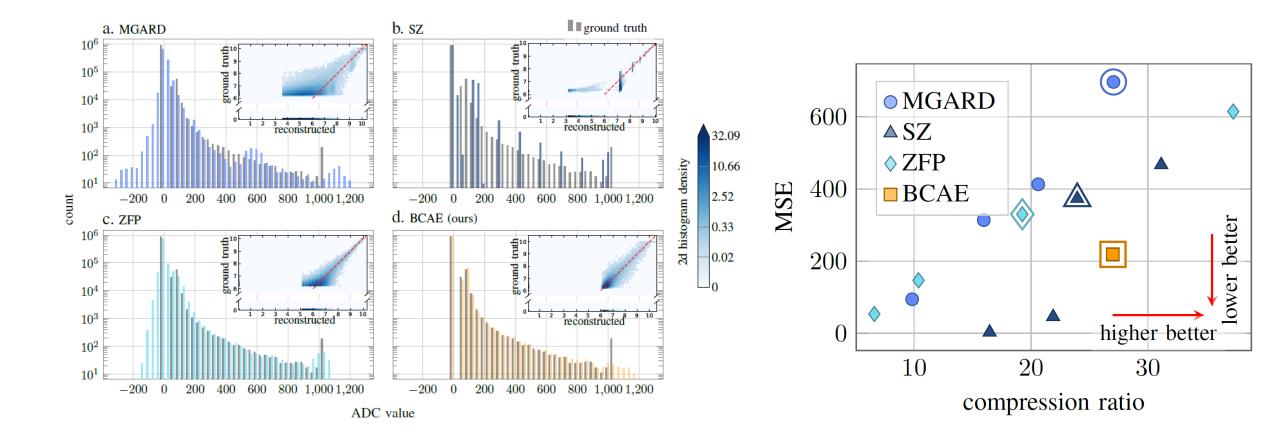
Bicephalous Convolutional Auto-Encoder (BCAE) and input transform [arXiv:2111.05423]

- Input transform: fill in the zero-suppression gap and make ADC distribution much less steep
- Bicephalous decoder: +classification decoder to note the zero-suppressed ADC voxels and +noise voxels in TPC





Comparison with existing algorithm [arXiv:2111.05423]



Brookhaven⁻ National Laboratory

BCAE Compressor with noise filtering

[Y. Huang, IEEE RT22, link]

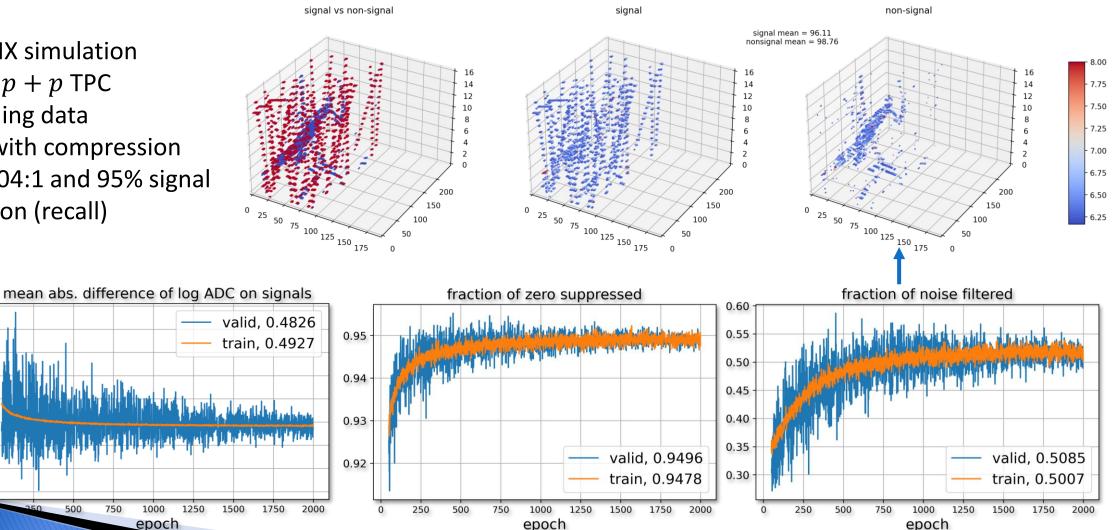
sPHENIX simulation 3 MHz p + p TPCstreaming data BCAE with compression ratio 204:1 and 95% signal retention (recall)

500

750

1000

epoch



Brookhaven ational Laboratory

0.75 -

0.70

0.65

0.60

0.55

0.50 0.45

0.40

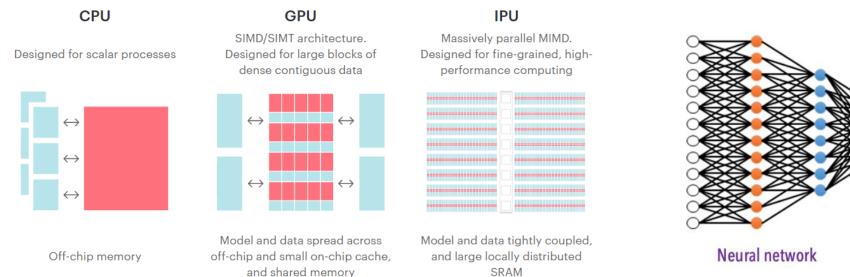
0.35

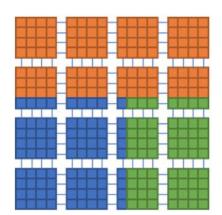
Novel AI Accelerators for streaming DAQ

- A new family of AI chips is emerging with non-von Neumann Architectures
 - Designed for NN computing
 - Massive on-chip activation/weight storage on sRAM
 - Good integration with popular AI tools

[GraphCore Web, link]

- Energy efficient and high throughput
- Significant throughput gain with testing of BCAE on Graphcore IPUs, a Dataflow Architectures processor for AI application





Mapped to Cerebras wafer (placed and routed)

[Cerebras Compiler Docs, link]

Summary

- Streaming readout is a paradigm shift adopted by many modern experiments, driven by NP physics of diverse event topologies and stringent bias control
- Requiring large factors of data reduction computationally and at high throughput
- Driving the need of AI-based algorithms and platforms:
 - Feature extraction, compression, signal selection/background noise removal, reconstruction
 - Utilizing ASIC, FPGA, and emerging novel AI accelerators

