Peter Pauli

JLab strange baryon physics program

QNP2022 - The 9th International Conference on Quarks and Nuclear Physics

CEBAF at Jefferson Lab

GlueX in Hall D

 tag electrons to determine photon energy produce linearly polarized photon beam via coherent bremsstrahlung on thin diamond

Acceptance:

 $\theta_{lab} \approx 1^{\circ} - 120^{\circ}$

- * Charged particles: $\sigma_p/p \approx 1\% 3\% (8\% 9\% \text{ very-forward high-momentum tracks})$
- Photons:

Since 2019: DIRC

Lambda - anti-Lambda

- BESIII saw interesting threshold enhancement
- * $\gamma p \rightarrow p \Lambda \bar{\Lambda} (\rightarrow p \{ p \pi^{-} \} \{ \bar{p} \pi^{+} \})$
- * GlueX-I: ~400k $\Lambda\bar{\Lambda}$ events
- Cross-section
 measurements

Lambda - anti-Lambda

- Study production mechanism
- * measure beam asymmetry Σ
- Investigate threshold enhancement
- Study Λ
 polarization

$\Lambda(1405)$ line shape measurement

N. Wickramaarachchi Wed 15:50

Excited
$$\Lambda$$
 with $J^P = \frac{1}{2}$

*
$$\Lambda(1405) \rightarrow \Sigma \pi$$

- Previous measurements (e.g. COSY-Jülich or CLAS) show very clear non-Breit-Wigner line shape
- Interpretation under active investigation
- Many theory models find two-pole structure: not just one state
- * Recent PDG addition: ** $\Lambda(1380)$

$\Lambda(1405)$ line shape measurement

N. Wickramaarachchi (HYP2022) Wed 15:50

Λ(1520) SDMEs

PP (Phys. Rev. C 105, 035201)

- * Excited Λ hyperon with $J^P = \frac{3}{2}$
- * $\Lambda(1520) \rightarrow K^- p$
- * different mechanism compared to $\Lambda\bar{\Lambda}$
- Study in Gottfried-Jackson frame

Λ(1520) SDMEs

PP (Phys. Rev. C 105, 035201)

- So far, sparse data at high energies
- red and blue show model predictions in Reggeized framework (priv. comm. based on [1])
- these
 measurements
 constrain models
 in the future

[1] Byung-Geel Yu and Kook-Jin Kong, Phys. Rev. C 96, 025208 (2017)

- * To get full picture of production we need couplings: measure cross-sections
- * Fit t-distribution and integrate to get "total cross-section"

- Good agreement with previous data by SLAC
- * More data on tape, including some with lower photon beam energy

Cascades at GlueX

		Overall	- Status as seen in $-$			
Particle	J^P	Status	$\Xi\pi$	ΛK	ΣK	$\Xi(1530)\pi$
$\Xi(1318)$	$1/2^{+}$	****				
$\Xi(1530)$	$3/2^{+}$	****	****			
$\Xi(1620)$		*	*			
$\Xi(1690)$		***		***	**	
$\Xi(1820)$	$3/2^{-}$	***	**	***	**	**
$\Xi(1950)$		***	**	**		*
$\Xi(2030)$		***		**	***	
$\Xi(2120)$		*		*		
$\Xi(2250)$		**				
$\Xi(2370)$		**				
$\Xi(2500)$		*		*	*	

- Only six well known states (>3***)
- * Would expect as many Ξ s as N*s and Δ s
- * Not many photoproduction experiments have been performed so far (S = -2)
- GlueX with its good charged and neutral final state particle coverage could help here
- Difficult analyses due to many final state particles

 $\Xi^{-}(1820)$

C. Akondi (HYP2022)

Excited
$$\Xi(1820)$$
 with $J^P = \frac{3}{2}^{-1}$

* *** resonance seen in $K^-\Lambda$ decays

- * First measurement of $\Xi(1820)$ in photoproduction
- * Only dominating feature in the $K^-\Lambda$ invariant mass

Further Cascades at GlueX

J. Hernandez (SESAPS 2021) C. Akondi (HYP 2022) B. Sumner (APS DNP 2021)

- * New kaon beam facility proposed (and accepted by PAC) for Hall D
 - Study of hyperons and kaon spectroscopy
- * Produce $\approx 10^4 K_L / s$ (1000 times higher than previous experiments)
- Proton and neutron targets
- Use GlueX spectrometer to identify final state
- * Might run 2026-2028

CLAS(12) in Hall B

- CEBAF Large Acceptance
 Spectrometer (1995-2012)
- ★ JLab 12 GeV upgrade completed in 2017 → CLAS12
- Old and new data under analysis
- Very broad science program
- Many experiments and analyses dedicated to strange baryons
- DC **Overview** FTOF Solenoid CTOF SVT Beamline HTCC PCAL/EC Torus LTCC Click on boxes for info
- Providing huge amounts of world data for (double) polarisation experiments (A. D'Angelo, Mon 10:30; S. Fegan, Mon 16:35)
- * Very Strange Group, studies excited strange baryons with S = -2, -3
- * Search for strange Hexaquarks (G. Clash, Wed 16:40)
- Study of hyperon-nucleon interactions

 $\frac{d\sigma}{d\Omega} = \frac{d\sigma}{d\Omega}|_{\text{unpolarised}} \left[1 - P_{\gamma}^{l} \Sigma \cos(2\phi)\right]$

 $+P_T^x \left(-P_\gamma^l \boldsymbol{H}\sin(2\phi) + P_\gamma^c \boldsymbol{F}\right)$

 $-P_T^y \left(-\boldsymbol{T} + P_{\gamma}^l \boldsymbol{P} \cos(2\phi)\right)$

- "Missing resonances": There are far more predicted nucleon resonances than have been measured
- * Measure (double) polarization observables to provide additional data
- * CLAS has many results on $\gamma N \rightarrow KY \quad (Y = \Lambda, \Sigma)$
- Adding more and more data over the years
- Used in fits to various models (JuBo, BnGa, MAID, SAID) to extract
 resonance parameters
 to get a better picture
 of nucleon spectrum

More by S. Fegan, Mon 16:35

Hyperon scattering

counts

18

N. Zachariou (HYP2022) Rowley *et al.*, PRL **127**, 272303 (2021)

- YN interactions are crucial ingredient in solving the "hyperon puzzle" for neutron stars
 - EOS needs to be stiff but can get softened by existence of hyperons in neutron stars →Two parallel sessions (Tue)

* Measure elastic
$$\Lambda p \to \Lambda p$$

cross-section

$$\sigma(p_{\Lambda}) = \frac{Y(p_{\Lambda})}{A(p_{\Lambda}) \times \mathcal{L}(p_{\Lambda}) \times \Gamma}$$
$$\mathcal{L}(p_{\Lambda}) = \frac{N_A \times \rho_T \times l}{M} N_{\Lambda}(p_{\Lambda})$$
$$\frac{N_{\Lambda}}{\mathcal{L}_{\gamma}} = \frac{d\sigma}{d\Omega} (2\pi) [\Delta \cos(\theta)] \qquad P(x) = \exp\left[-\frac{M}{p} \frac{x - x_0}{\tau}\right]$$

Path length determined from simulations, accounting for beam size and kinematic dependence of photoprod. cs., as well as decay length of hyperons

E12-17-003 in Hall A

- There is limited Λp scattering data but no Λn data
 - A previously reported potential Λnn state might be the only way to investigate Λn interaction experimentally
- Study Λnn and Σnn electroproduction on tritium target

HYP2022

Statistics too low for definitive statements \rightarrow new proposal conditionally approved

Prog. Theor. Exp. Phys. 2022 013D01

Phys Rev. C 105, L051001 (2022)

L. Tang Thu 13:45

Jefferson Lab

Summary

- JLab delivers exciting strangeness results
- GlueX provides valuable photoproduction data for many different reactions
 - DIRC upgrade will boost analysis power for strange final states
- * KLong will be the next big neutral kaon beam facility
- CLAS still adds to the world data on polarisation observables for strange baryon production
 - But also important data such as YN scattering
- CLAS12 has an ambitious program with many different analyses in the pipeline
- Other experimental halls also perform impressive experiments with strange baryons
 20

