Excited state hadrons in $D\pi$, DK scattering from lattice QCD

David Wilson

had spec.org

QNP2022 The 9th International Conference on Quarks and Nuclear Physics 8th September 2022

spectroscopy from first-principles is a hard problem

the quark model is a good guide for low-lying states

models are useful, but what does **QCD** say?

Lattice QCD provides a rigorous approach to hadron spectroscopy

- as **rigorous** as possible
- **all** necessary **QCD** diagrams are computed
- excited states appear as unstable resonances in a scattering amplitude

tremendous progress in recent years but not yet ready for precision comparisons

- physical pions are very light
- most interesting states can decay to **many** pions
- control of light-quark mass is a useful tool
- small effects not considered in general:

finite lattice spacing, isospin breaking, EM interactions

goal: what does **QCD** say about the excited hadron spectrum?

$$J^P = 0^+$$

- $D_{s0}(2317)$ $C\overline{S}$
- D₀*(2300) $c\overline{l}$

what is the mass ordering? why are the masses so close? why are the widths so different?

- compare : $J^P = 0^-$
- *D*_s m~1969 MeV
- *D* m~1870 MeV

[masses, widths from PDG]

[masses, widths from PDG]

 $D_0^*(2300) \& D_{s0}^*(2317)$ what is the mass ordering? why are the masses so close? why are the widths so different?

anisotropic (3.5 finer spacing in time) Wilson-Clover

 L/a_s =16,20,24 & 32 m_{\pi} = 391 & 239 MeV

rest and moving frames

operators used:

 $\bar{\psi} \Gamma \overleftrightarrow{D} \ldots \overleftrightarrow{D} \psi\,$ local qq-like constructions

$$\sum_{\vec{p_1} + \vec{p_2} \in \vec{p}} C(\vec{p_1}, \vec{p_2}; \vec{p}) \Omega_{\pi}(\vec{p_1}) \ \Omega_{\pi}(\vec{p_2})$$

two-hadron constructions

 $\Omega_{\pi}^{\dagger} = \sum_{i} v_{i} \mathcal{O}_{i}^{\dagger}$

uses the eigenvector from the variational method performed in e.g. pion quantum numbers

using *distillation* (Peardon *et al* 2009) many wick contractions

- we compute a large correlation matrix
- then use GEVP to extract energies

Lüscher

1-dimensional QM, periodic BC, two interacting particles: $V(x_1 - x_2) \neq 0$

$$\psi(0) = \psi(L), \quad \frac{\partial \psi}{\partial x}\Big|_{x=0} = \frac{\partial \psi}{\partial x}\Big|_{x=L}$$

$$\sin\left(\frac{pL}{2} + \delta(p)\right) = 0$$

$$p = \frac{2\pi n}{L} - \frac{2}{L}\delta(p)$$
2

Phase shifts via Lüscher's method:

$$\tan \delta_1 = \frac{\pi^{3/2} q}{\mathcal{Z}_{00}(1;q^2)}$$
$$\mathcal{Z}_{00}(1;q^2) = \sum_{n \in \mathbb{Z}^3} \frac{1}{|\vec{n}|^2 - q^2}$$

Lüscher 1986, 1991

generalisation to a 3-dimensional strongly-coupled QFT

→ powerful non-trivial mapping from finite vol spectrum to infinite volume phase

G. Cheung et al (HadSpec), JHEP 02 (2021) 100 arXiv: 2008.06432

 $D_{s0}(2317)$

bound states in DK amplitude at both masses

similar couplings c~1400 MeV

L. Gayer, N. Lang et al (HadSpec), arXiv:2102.04973

$D\pi$ with several parameterisations

0.003

0.004

0.002

0.001

-0.001

L. Gayer, N. Lang et al (HadSpec), arXiv:2102.04973

simple parameterisations work well over this narrow range: effective range, Breit-Wigner, elastic K-matrix

-0.3

-0.4

simplification in a lattice calcs vs experiment: pure s-channel elastic scattering no heavy hadron production process to parameterise

$$t \sim \frac{c^2}{s_{\text{pole}} - s} \qquad \sqrt{s_{\text{pole}}} = m \pm \frac{i}{2}\Gamma$$

suggestive of a much lighter D_0^* compared with the D_{s0}^*

natural mass ordering: given light, strange constituents

likely hypothesis: D₀^{*} pole position is lower, m~2100-2200 MeV ? see also LHCb data+ChiPT+unitarity: Du et al, PRL 126, 192001

500

0

1000

1500

|c|/MeV

2000

2500

see also LHCb data+ChiPT+unitarity: Du et al, PRL 126, 192001

SU(3)F symmetry - DKbar I=0 poles

¥

*

★

(a)

(b)

(d)

(e)

(g)

(h)

(i)

(k)

17/26

SU(3)F symmetry

$$(I = 0) DK - D_s \eta : \overline{\mathbf{3}} \oplus \overline{\mathbf{15}} \qquad (I = \frac{1}{2}) D\pi - D\eta - D_s \overline{K} : \overline{\mathbf{3}} \oplus \overline{\mathbf{6}} \oplus \overline{\mathbf{15}}$$
$$(I = 1) DK - D_s \pi : \mathbf{6} \oplus \overline{\mathbf{15}} \qquad (I = 0) D\overline{K} : \mathbf{6}$$
$$(I = \frac{1}{2}) D_s K, (I = 1) D\overline{K}, (I = \frac{3}{2}) D\pi : \overline{\mathbf{15}}$$

bound state in the $\overline{3}$

attraction, possibly a virtual state in the 6 (D π I=1/2 and DKbar I=0)

repulsion in 15: e.g. l=3/2 D π

[See also PR D87, 014508 (2013) (1208.4535); PL B767, 465 (2017) (1610.06727); PR D98, 094018 (2018) (1712.07957); PR D98 014510 (2018) (1801.10122); EPJ C79, 13 (2019) (1811.05585); arXiv:2106.15391] SU(3)F symmetry

bound state in the 3

attraction, possibly a virtual state in the 6 (D π I=1/2 and DKbar I=0)

repulsion in 15: e.g. I=3/2 D π

[See also PR D87, 014508 (2013) (1208.4535); PL B767, 465 (2017) (1610.06727); PR D98, 094018 (2018) (1712.07957); PR D98 014510 (2018) (1801.10122); EPJ C79, 13 (2019) (1811.05585); arXiv:2106.15391]

[masses, widths from PDG]

 $m_{\pi} = 391 \text{ MeV}$

N. Lang and DW (HadSpec) arXiv: 2205.05026

$D^*\pi$ scattering

$D^*\pi$ scattering

2350

23/26

 $J^P = 2^+$

2550

heavy-quark spin symmetry

24/26

Rosner: Comments Nucl.Part.Phys. 16 (1986) 3, 109-13, Isgur, Wise: PRL 66 (1991) 1130-1133

in the limit of an infinitely massive quark, the spin of the heavy quark cannot be perturbed by QCD interactions

states can be arranged into two doublets depending on heavy-quark spin

charm quark mass is still large compared with the scale of QCD interactions

suggests decoupled S and D-wave amps

 $\left(\begin{array}{c} D_0^* \\ D_1 \end{array}\right)$

 ${}^3\!S_1,\, {}^1\!S_0$ amplitudes are very similar

suggestive of a lightest D_1 with a pole mass below 2400 MeV for physical quark masses

Lattice QCD provides a first-principles tool to do hadron spectroscopy

D and Ds systems

- readily accessible in lattice QCD calculations

- useful place to compare lattice with experiment

& other theoretical approaches

These methods are widely applicable

- coupled-channel scattering
- baryons

. . .

- charmonium, b-quarks

- form factors, radiative transitions (incl. resonances)

Control of 3+ body effects needed for

- lighter pion masses
- higher resonances

