Updated experimental insight into the ŊN interaction.

Otón Vázquez Doce (INFN Frascati)
QNP2022, Sept. 9th, 2022

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 754496
KbarN interaction: building block of non-perturbative regime of QCD

KN and KbarN strong interactions are very different
The presence of the strange quark has dramatic consequences
- Strong attractiveness in KbarN gives rise to bound states

Sub-threshold: \(\Lambda(1405)\) is an “old object” not fitting in the standard 3-quark picture
- Molecular state with two poles KbarN-\(\Sigma\pi\)
- Strong coupled channel dynamics
Theoretical framework

Theoretical approaches:
• meson exchange
• phenomenological
• chiral SU(3) dynamical
• Lattice QCD
Theoretical framework

Theoretical approaches:
- meson exchange
- phenomenological
- chiral SU(3) dynamical
- Lattice QCD

Data is crucial to test (+feed) this approaches.
Theoretical framework

Theoretical approaches:
- meson exchange
- phenomenological
- **chiral SU(3) dynamical**
- Lattice QCD

Data is crucial to test (+feed) these approaches.

Data fitting by chiral SU(3)
- Going to NLO (N2LO?), s+p waves ⇒ more parameters to be fixed (by data)
- Adding **new data** helps to improve the model
- Adding **more precise data** helps to improve the model
- Adding **data at different energies** helps to improve the model
Available experimental data

Lorentz-invariant formulation of chiral effective field theory (LO)

Ren, Epelbaum, Gegelia, Meißner, EPJC (2021)

Extension to higher energies (LO+NLO):

Feijoo, Magas, Ramos, PRC 2019
Bruns, Cieplý, NPA 2022

and higher partial waves:

Feijoo, Gazda, Magas, Ramos, Symmetry 2021

A. Ramos @ QNP2022
Available experimental data

- B and Γ of kaonic nuclear states
- Single vs Multi-nucleonic absorption rates
- K-pp three body femtoscopy

Antikaonic atoms

- SIDDHARTA constraint on a_0^{K-p}

Scattering data

- $\sigma_{K^-p \rightarrow K^-p}$
- $\sigma_{K^-p \rightarrow \bar{K}^0n}$

Femtoscopy

- $\Lambda(1405)$ mass shape in different channels
- Threshold branching ratios
- Scattering amplitudes below threshold

image courtesy of Y. Kamiya
Available experimental data

- **Antikaonic atoms**
 - SIDDHARTA constraint on a_0^{K-p}

- **Scattering data**
 - $\sigma_{K^-p\rightarrow K^-p}$
 - $\sigma_{K^-p\rightarrow K^0n}$

- **Femtoscopy**
 - $\Lambda(1405)$ mass shape in different channels
 - Threshold branching ratios
 - K^-p correlation

- **B and Γ of kaonic nuclear states**
- **Single vs Multi-nucleonic absorption rates**
- **K-pp three body femtoscopy**

Image courtesy of Y. Kamiya
Measurement of the **shift**(ϵ) and **width**(Γ) induced by the **strong interaction** in the lowest level atomic transition.

Translated via Desser-type Formula into a K^-p scattering length that is an average of the KbarN scattering lengths for $I=0$ and $I=1$

$$\epsilon_{1s} = -283 \pm 36(\text{stat}) \pm 6(\text{syst}) \text{ eV}$$

$$\Gamma_{1s} = 541 \pm 89(\text{stat}) \pm 22(\text{syst}) \text{ eV},$$

$$\epsilon_{1s} - \frac{i}{2} \Gamma_{1s} = -2\alpha^3 \mu_c^2 a_p (1 - 2\alpha \mu_c (\ln \alpha - 1) a_p)$$

$$a_{K^-p} = \frac{a_0 (I = 0) + a_1 (I = 1)}{2}$$
KbarN Femtoscopy with ALICE

Nucleus-Nucleus (pp, Pb-Pb) collisions at the LHC recorded by ALICE

![Diagram showing proton-proton collision and kaon production](https://www.nature.com/articles/d41586-020-03393-z)

M. Lorenz https://www.nature.com/articles/d41586-020-03393-z
Observable: **Correlation function of two final-state particles**

\[
C(k^*) = \frac{\xi(k^*)}{N_{\text{mixed}}(k^*)} \cdot \frac{N_{\text{same}}(k^*)}{N_{\text{mixed}}(k^*)}
\]
Femtoscopy: Theoretical correlation function

\[
C(k^*) = \int d^3 r^* S(r^*) |\psi(k^*, r^*)|^2
\]

Femtoscopy: Theoretical correlation function

\[C(k^*) = \int d^3r^* S(r^*) |\psi(k^*, r^*)|^2 \]

theory

source wave function

The overlap of the kaon wavefunction with the nucleon delivers insight into the effects of the strong interaction, competing with Coulomb effects.
SIDDHARTA: antiKaonic Hydrogen

The overlap of the kaon wavefunction with the nucleon delivers insight into the effects of the strong interaction, competing with Coulomb effects.

* for antikaonic hydrogen
the K- p distance is ~100 times the Bohr radius

Sensitive to near surface potential shape

Small collision systems $r \sim 1$ fm
⇒ effect of the interaction is enhanced

$$C(k^*) = \int S(r^*) \left| \Psi(k^*, \vec{r}^*) \right|^2 d^3r^*$$
KbarN at threshold and low momentum

SIDDHARTA: antiKaonic Hydrogen

The overlap of the kaon wavefunction with the nucleon delivers insight into the effects of the strong interaction, competing with Coulomb effects.

* for antikaonic hydrogen
 the K- p distance is ~100 times the Bohr radius

Sensitivity to near surface potential shape

Small collision systems r~1fm
⇒ effect of the interaction is enhanced

\[C(k^*) = \int S(r^*) |\Psi(k^*, r^*)|^2 d^3r^* \]

ALICE: \(K^- p \) femtoscopy

Gaussian Source Function (\(r_G = 1.25 \text{ fm} \))

Typical short-range nuclear potential

Deliver different observables ⇔ scattering lengths can be obtained from both
(via approximations: Deser-type and Lednický–Lyuboshitz formulae)
K⁻p Femtoscopy with ALICE in pp collisions

Small systems: pp collisions $r \sim 1$ fm

⇒ Provides a quantitative test of coupled channels in the theory

Strong interaction: Kyoto model
K⁻p Femtoscopy with ALICE in pp collisions

Small systems: pp collisions $r \sim 1$fm

⇒ Provides a **quantitative test of coupled channels in the theory**

Effects of coupled channels enhanced by small source
- less important for large sources of HIC

Strong interaction: Kyoto model
Large systems (HIC): Pb-Pb collisions, up to $r \sim 9$ fm

Strength of coupled channels significantly reduced

- Kyoto model
- Fit to the scattering parameters

\[R_{kp} = 5.2 \pm 0.11 \text{(stat)} ^{+0.19}_{-0.52} \text{(syst)} \text{ fm} \]
K^−p Femtoscopy with ALICE in Pb-Pb collisions

Large systems (HIC): Pb-Pb collisions, up to $r \sim 9$ fm

- Strength of coupled channels significantly reduced
 - Kyoto model
 - Fit to the scattering parameters

⇒ Antikaonic-hydrogen and K-p femtoscopy scattering parameters compatible
Upcoming: Accessing KbarN I=1 interaction

Full isospin dependence needs K^−d interaction measurements:

\[a_{K^−d} = \frac{1}{2} \left(\frac{m_N + m_K}{m_N + m_N} \right) \left(3a_1 + a_0 \right) + C \]
Upcoming: Accessing KbarN $I=1$ interaction

Full isospin dependence needs K^-d interaction measurements:

$$a_{K^-d} = \frac{1}{2} \left(\frac{m_N + m_K}{m_N + \frac{m_K}{2}} \right) (3a_1 + a_0) + C$$

SIDDHARTA-2 with new experimental setup
→ measurement of antikaonic deuterium
→ very challenging! low yield of signal
→ Complete upgrade of SIDDHARTA setup
Upcoming: Accessing KbarN I=1 interaction

Full isospin dependence needs K–d interaction measurements:

\[a_{K^-d} = \frac{1}{2} \left(m_N + \frac{m_K}{2} \right) \left(3a_1 + a_0 \right) + C \]

SIDDHARTA-2 with new experimental setup

→ measurement of **antikaonic deuterium**
→ very challenging! low yield of signal.
→ Complete upgrade of SIDDHARTA setup

Beam tuning April – May 2022, He measurement

➢ Deuterium measurement started begin of June 2022 at DAΦNE
Accessing KbarN I=1 interaction with ALICE

Access to I=1 KbarN interaction via femtoscopy

\[C_{K_S^0p} = \frac{1}{2} \left(C_{\bar{K}^0p} + C_{K^0p} \right) \]

\[|K_S^0p\rangle = \left(|\bar{K}^0p\rangle - |K^0p\rangle \right)/\sqrt{2} \]

- \(\bar{K}N, I = 1 \)
- \(KN, I = 0, 1 \)

- \(I = 1 \) component only
- Well determined with scat. exp.

On the horizon: \(K^0d \) femtoscopy

Femtoscopy with deuterons (K\(^+\)d, pd) by ALICE in small systems and by STAR in HIC [H. Zbroszczyk @ HYP2022]
Kaonic nuclei
AMADEUS: K^- absorption in 4He and 12C

Multi-nucleon absorption processes dominate

$K^- + A \rightarrow Yp + A'$

AMADEUS Coll. PLB 758 (2016) 134
AMADEUS Coll. PLB 782 (2018) 339
Below threshold (-33 MeV)
$K^- n \to \Lambda \pi^-$ amplitude, non resonant $I=1$

$|A_{K^- n \to \Lambda \pi^-}| = (0.334 \pm 0.018 \text{ stat}^{+0.034}_{-0.058 \text{ syst}}) \text{ fm}$.

Above threshold
$K^- p \to \Lambda \pi^0, \Sigma^0 \pi^0$ cross sections (preliminary)

- $\sigma_{K^- p \to \Sigma^0 \pi^0} = 42.8 \pm 1.5 (\text{stat.})^{+2.4}_{-2.0} (\text{syst.}) \text{ mb}$
- $\sigma_{K^- p \to \Lambda \pi^0} = 31.0 \pm 0.5 (\text{stat.})^{+1.2}_{-1.2} (\text{syst.}) \text{ mb}$

th. calculation
Y. Ikeda, T. Hyodo, W. Weise,
In-flight $^3\text{He}(K^-,n)\Lambda p$ reaction @ 1.0 GeV/c

\[B_K = 42 \pm 3\text{(stat.)}^{+3}_{-4}\text{(syst.)} \text{ MeV} \]
\[\Gamma_K = 100 \pm 7\text{(stat.)}^{+19}_{-9}\text{(syst.)} \text{ MeV} \]
3-Body femtoscopy by ALICE

\[Q_3 = \sqrt{-q_{12}^2 - q_{23}^2 - q_{31}^2} \]

ALICE Preliminary

pp $\sqrt{s} = 13$ TeV

High Mult. (0-0.17% INEL)

$(p-pK^-) \oplus (\bar{p}-\bar{K}^+)$

ALI-PREL-513597
Isolation of the three-body effects in the correlation function:

\[
c_3(Q_3) = C(Q_3) - C_{12}(Q_3) - C_{23}(Q_3) - C_{31}(Q_3) + 2
\]

2-body correlations experimentally determined

Genuine three-body correlations (cumulant)

Measured triplets

Lower-order correlations

ppK\(^{-}\) cumulant

⇒ ppK\(^{-}\) cumulant is compatible with zero.
ppK\(^-\) cumulant

⇒ ppK\(^-\) cumulant is compatible with zero.

⇒ Suggest that three-body effects are not relevant for the description of the K\(^-\)pp system.

In p-p-p correlations significant 3-body effect (pauli blocking? FSI?)
⇒ relevant for the description of the K-NNN system?
We are collecting new data (e.g. ALICE run 3 with x500 stats and improved tracking, SIDDHARTA-2 running)

In the near future:
- new experimental apparatus
- new facilities

In the KbarN field a boost similar to the precise measurement of antikaonic hydrogen is expected

…still on the search for a description of the KbarN interaction that can accommodate all the data from above to below threshold