University of Silesia, Poland NE **Highlights from the NA61/SHINE** strong interaction program

Seweryn Kowalski for the NA61/SHINE Collaboration

UNIVERSITY OF SILESIA IN KATOWICE

Fixed target experiment located at the CERN SPS accelerator

NA61/SHINE - Physics program

Strong interactions program

- search for the critical point of strongly interacting matter
- study of the properties of the onset of deconfinement
- Hadron-production measurements for neutrino experiments
- Hadron-production measurements for cosmic ray experiments

physics results

onset of deconfinement

S.INE

onset of deconfinement: step

Qualitatively similar energy dependence is seen in p+p, Be+Be, Ar+Sc and Pb+Pb Magnitude of T increases with the system size

Kaons are only weakly affected by rescattering and resonance decays during the post-hydro phase (at SPS and RHIC energies).

Connected temperature of the freeze-out surface and not the early-stage fireball

onset of deconfinement: horn

Plateau like structure visible in p+p, Be+Be and Ar+Sc Ar+Sc is higher than p+p and Be+Be

Good measure of the strangeness to entropy ratio which is different in the confined phase (hadrons) and the QGP (quarks, anti-quarks and gluons).

Probe of the onset of deconfinement.

p+p interactions and onset of deconfinement

- The sharp break in K^+/π^+ and inverse slope parameter T in p+p collisions at SPS energies
- The break energy is ≈7 GeV close to the energy of the onset of deconfinement ≈8 GeV
- The UrQMD model does not reproduce the sharpness of the break

Phys. Rev. C 102, 011901(R)

Be+Be collisions and onset of deconfinement

- NA61/SHINE the only world data for Be+Be collisions
- No visible sharp break in K^+/π^+ and inverse slope parameter T. Note the limited energy range of data
- No models which describe all measured quantities

Eur.Phys.J.C 81 (2021) 1, 73

update of the "kink" plot – pion multiplicity per number of wounded nucleons

• The NA61/SHINE results

- *N*+*N* interactions agree well with the world data
- Be+Be collisions are mostly between measurements from N+N and Pb+Pb collisions.
- Ar+Sc collisions seem to be systematically higher than the results for N+N, Be+Be and Pb+Pb collisions at the lower energies
- Ar+Sc close to the Pb+Pb results at the highest energies.

arXiv:2101.08494v2 [hep-ex] 25 Jan 2021

width of the rapidity distribution - speed of sound

• The collision energy dependence of the rapidity distribution width is associated with the speed of sound *c*_S

$$\sigma^2 = \frac{8}{3} \cdot \frac{c_s^2}{1 - c_s^4} \cdot \ln\left(\frac{\sqrt{s_{NN}}}{2m_p}\right)$$

E. V. Shuryak. Yad. Fiz., 16:395-405, 1972.

- The dense matter produced in the collisions was predicted to show a minimum in the speed of sound energy dependence around the collision energy of the onset of deconfinement
- Confirmed by Pb+Pb data in combination with results from central Au+Au collisions
- The results of NA61/SHINE from *central* Ar+Sc, Be+Be collisions, and inelastic N+N reactions need to be extended to lower end energies for conclusion about a possible minimum

System size dependence

K^+/π^+ and T vs the system size at 150A GeV/c

None of the models reproduces K^+/π^+ ratio or T for whole $\langle W \rangle$ range

PHSD: Eur.Phys.J.A 56 (2020) 9, 223, arXiv:1908.00451 and private communication; SMASH: J.Phys.G 47 (2020) 6, 065101 and private communication; UrQMD and HRG: Phys. Rev. C99 (2019) 3, 034909 SMES: Acta Phys. Polon. B46 (2015) 10, 1991 - recalculated p+p: Eur. Phys. J. C77 (2017) 10, 671 Be+Be: Eur. Phys. J. C81 (2021) 1, 73 Ar+Sc: NA61/SHINE preliminary Pb+Pb: Phys. Rev. C66, 054902 (2002)

measurements after LS3

PHYSICAL REVIEW D **60** 114028 Theoretical fluctuations in presence of critical point

critical point

multiplicity and net-charge fluctuations in p+p, Be+Be and Ar+Sc

No structure indicating critical point

 $\kappa_{1} = \langle N \rangle$ $\kappa_{2} = \langle (\delta N)^{2} \rangle = \sigma^{2}$ $\kappa_{3} = \langle (\delta N)^{3} \rangle = S\sigma^{3}$ $\kappa_{4} = \langle (\delta N)^{4} \rangle - 3 \langle (\delta N)^{2} \rangle^{2} = K\sigma^{4}$ where: $N - \text{multiplicity}; \, \delta N = N - \langle N \rangle$ $\sigma - \text{standard deviation}$

- S skewness; K kurtosis
- Negatively charge κ_2/κ_1 : increasing difference between small systems (p+p and Be+Be) and a heavier system (Ar+Sc) with collision energy
- Net-charge κ_3/κ_1 :increasing difference between Be+Be and other systems (p+p and Ar+Sc) with collision energy
- κ_4/κ_1 : consistent values for all measured systems at given collision energy

second scaled factorial moments - intermittency analysis

$$F_2(\delta) = \frac{\left\langle \frac{1}{M} \sum_{i=1}^M n_i (n_i - 1) \right\rangle}{\left\langle \frac{1}{M} \sum_{i=1}^M n_i \right\rangle^2}$$

- δ size of each of the M = $\frac{\Delta}{\delta}$ subdivision intervals of the momentum phase-space region Δ
- n_i number of particles in i-th bin
- ..
 angle averaging over events

- A deviation of ΔF_2 from in mid-central Ar+Sc?
- The data points are correlated which makes the interpretation difficult.

proton and charge hadron intermittency in Ar+Sc and Pb+Pb collisions

No structure indicating critical point

$$F_r(M) = \frac{\left\langle \frac{1}{M} \sum_{m=1}^M n_m (n_m - 1) \dots (n_m - r + 1) \right\rangle}{\left\langle \frac{1}{M} \sum_{m=1}^M n_m \right\rangle^r},$$

where $\langle \ldots \rangle$ denotes averaging over events, M the number of cells

Statistically independent points, cumulative variables No indication of critical point in these analyses (power-law scaling $F_r(M) \sim M^{\phi_r}$)

two-pion - symmetric Levy HBT correlations

The Levy stability parameter α describes shape of the source 3D Ising model with random external field predicts $\alpha = 0.5 \pm 0.05$ at critical point

strangeness production in p+p

K production in inelastic p+p collisions at 158 GeV/c

New results on K⁺, K⁻ (preliminary) and K_S^0 from high statistic p+p data

K[±]: almost 20 times larger dataset than previously published results (Eur.Phys.J.C 77 (2017), 671)

*K*⁰_{*S*} mean multiplicity: 0.162±0.001±0.011

Model predictions deviate by up to 20% from the measurements — best predictions from EPOS 1.99.

Ξ production in inelastic p+p collisions at 158 GeV/c

- The only results on Ξ^- and $\overline{\Xi}^+$ production in *p*+*p* at SPS energy
- Strong suppression of $\overline{\Xi}^+$ production: $\langle \overline{\Xi}^+ \rangle / \langle \Xi^- \rangle = 0.24 \pm 0.01 \pm 0.05$

Ξ production in inelastic p+p collisions – model comparison

у

 Transport models fail to describe the NA61/SHINE results on E production in p+p collisions

23

$\Xi(1530)^{0}$ production in inelastic p+p collisions at 158

Eur.Phys.J.C 81 (2021) 10, 911

NE

• The only results on $\Xi(1530)^0$ production in *p*+*p* at the SPS energy

- The second result on $\Xi(1530)^0$ production in p+p (ALICE at 7 TeV Eur.Phys.J.C 75 (2015) 1)
 - Suppression of $\overline{\Xi}(1530)^0$ production: $\langle \overline{\Xi}(1530)^0 \rangle / \langle \Xi(1530)^0 \rangle = 0.40 \pm 0.03 \pm 0.05$

$\Xi(1530)^{0}$ production in inelastic p+p collisions at 158 GeV/c

-EPOS 1.99

Eur.Phys.J.C 81 (2021) 10, 911

 EPOS describes well transverse momentum and rapidity distributions of E(1530)⁰ and E(1530)⁰

• UrQMD significantly overestimates all spectra of $\Xi(1530)^0$ and $\overline{\Xi}(1530)^0$ hyperons

strangeness enhancement factors

The strangeness enhancement factor E

 $E = \frac{2}{\langle N_W \rangle} \frac{dn/d\mathbf{y} \left(A + A\right)}{dn/d\mathbf{y} \left(p + p\right)},$

Nucl. Phys. B111 (1976) 461

Thanks to the NA61/SHINE p+p data new based line for Ξ^{-} and Ξ^{+} production at 158 GeV/c was set

NA61/SHINE in 2022-2025

charm production and the onset of deconfinement

- What is the mechanism of open charm production?
- How does the onset of deconfinement impact open charm production?
- How does the formation of quark gluon plasma impact J/ψ production?

To answer these questions the mean number of charm quark pairs, $\langle c\bar{c} \rangle$, produced in A+A collisions has to be known. Up to now the corresponding experimental data does not exist and NA61/SHINE will perform this measurement in the near future.

Summary

- 2D scan in system size and collision energy was completed in 2017 with Xe+La data
- NA61/SHINE delivers reach information related to the onset of deconfinement in the light and medium-size system
 - the collision energy dependence of the inverse slope T parameter shows the so-called *step* structure in p+p, Be+Be, and Ar+Sc
 - the sharp break in K^+/π^+ and inverse slope T parameter in p+p collisions is visible
 - the *horn* structure does not appear in p+p, Be+Be, and Ar+Sc
 - for Ar+Sc collisions, the ratio of mean pion multiplicity to the number of wounded nucleons and its collision energy dependence at the highest SPS energies are close to the ones for central Pb+Pb collisions and higher than the corresponding results for *N*+*N* and Be+Be interactions.
 - the velocity of sound extracted from the width of rapidity distribution from *central* Ar+Sc, Be+Be collisions, and inelastic N+N reactions is consistent with results for central Pb+Pb but too limited to allow a significant conclusion about a possible minimum in the speed of sound energy dependence
- The onset of Fireball unexpected system size dependence
 - $(p+p = Be+Be) \neq (Ar+Sc)$
 - the idea of new measurements after LS3
- So far, no convincing indication of the critical point in:
 - net-charge fluctuations measured by the higher-order moments
 - two-pion HBT correlation functions
 - second scaled factorial moments of protons
- New and unique results on K+, K-, K_S^0 , K*, $\Xi \overline{\Xi}^+$, $\Xi(1530)0$ and $\overline{\Xi}(1530)^0$ production in p+p interactions
 - None of the present theoretical models can explain strangeness production in p+p NA61/SHINE data
- NA61/SHINE will measure open charm production in 2022- 2025

Thank You

seweryn.kowalski@us.edu.pl

Backup

Uniqueness of heavy ion results from NA61/SHINE

- Two onsets in nucleusnucleus collisions
- Onset of deconfinement beginning of QGP formation
- Onset of fireball beginning of formation of a large cluster which decays statistically

second scaled factorial moments of protons - intermittency analysis

- Results for :
 - statistically independent points
 - cumulative quantities
 - M = 1 ... 32 bins in p_x and p_y
- second scaled factorial moments of protons for Ar+Sc at 150A GeV/c and Pb+Pb at 30A GeV/c shows no indication for power-law increase with a bin size
- Exclusion plot
 - predictions for simple power-law model parameters
 - The intermittency index ϕ_2 (power-law component) for a system freezing out at the QCD critical endpoint is expected to be $\phi_2 = 5/6$

two-pion HBT correlation functions

Lévy distribution leads to power-law correlation functions

 $C(q) = 1 + \lambda \cdot e^{-(qR)^{lpha}}$ Csörgö et al., EPJC36

Lévy-exponent lpha pprox 0.5 for the critical point

- α between Gaussian or Cauchy shape might be the sign of anomalous diffusion
- α does not indicate the critical point in Be+Be (far above 0.5)

strangeness production in p+p at 158 GeV/c

Detector upgrade during LS2

Uniqueness of NA61 open charm program

Landscape of present and future heavy ion experiments

	RHIC	quark-gluon plasma
L	rapid cross-over SI	critical point
	mesonic matter	NICA J-PARC
	hadronic matter	FAIR first order transition
	baryo	onic matter

Only NA61/SHINE is able to measure open charm production in heavy ion collisions in full phase space in the near future

- LHC and RHIC at high energies: measurements of open charm are performed in a significantly limited acceptance; this limitation is due to the collider kinematics and related to the detector geometry
- RHIC BES collider ($\sqrt{s_{NN}} = 7.7 \ GeV 39 \ GeV$): measurement not considered in the current program, this may likely be due to difficulties related to collider geometry and kinematics as well as the low charm production crosssection
- RHIC BES fixed-target ($\sqrt{s_{NN}} = 3 \ GeV 7.7 \ GeV$): not considered in the current program
- NICA ($\sqrt{s_{NN}} = < 11 \text{ GeV}$): measurements during stage 2 (after 2023) are under consideration
- J-PARC-HI ($\sqrt{s_{NN}} \lesssim 6 \ GeV$): under consideration, may be possible after 2025
- FAIR SIS-100 ($\sqrt{s_{NN}} \lesssim 5 \ GeV$): not possible due to the very low cross-section at SIS-100, systematic charm measurements are planned with SIS-300 (($\sqrt{s_{NN}} \lesssim 7 \ GeV$) which is part of the FAIR project, but not of the start version

electromagnetic effects

π^+/π^- ratio and spectator-induced electromagnetic effects

• Charged pion trajectories can be modified by electromagnetic interactions (repulsion for π^+ and attraction for π^-) with the spectators \rightarrow the effect is sensitive to the space-time evolution the system

Phys.Rev.C 75 (2007) 054903 *Phys.Rev.C* 87 (2013) 5, 054909 *Phys.Rev.C* 102 (2020) 1, 014901

- Spectator induced electromagnetic effects are stronger with rapidity closer to the spectator rapidity and with low p_T
- The effect was observed in Pb+Pb 150A GeV/c collision by NA49

First time ever observation of the spectator-induced electromagnetic effects in peripheral small systems: Ar+Sc at 40A GeV/c

HRG model in the CE formulation and p+p data

Eur.Phys.J.C 81 (2021) 10, 911

Fit by different variants of the HRG model (THERMAL-FIST1.3

Comput.Phys.Commun.244 (2019)295):

- Canonical Ensemble with fixed ys=1
- Canonical Ensemble with fitted strangeness saturation parameter γs

Significant discrepancies of the fitted parameters The statistical model fails when fixed γ_s

The fit with free γ_s finds $\gamma_s = 0.434 \pm 0.028$ and reproduces the measurements well – a suppression of strange particle production in *p*+*p* collisions at CERN SPS energies