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Motivation

» QCD vacuum characterized by confinement and spontaneously
broken chiral symmetry

QCD phase diagram

» Liquid-gas phase transition to nuclear matter at u =923 MeV

uark-gluon plasma
155 _E[(_)SSOVSI’ q g p

» At u~2.6GeV perturbative QCD results imply quark and gluon
d.o.f. in color superconducting phase
[Alford, Rajagopal and Wilczek, Nucl. Phys. B 537 (1999)]
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» Essential for neutron stars with central densities n~5-6ng
[Legred et al., Phys. Rev. D 105 (2022)]
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Motivation

» For large p lattice QCD unavailable because of sign problem

CD phase di
QcD phase diagram » Chiral effective field theory only valid upto n<2ng

[Holt, Rho and Weise, Phys. Rept. 621 (2016)]

15 | crossover quark-gluon plasma

» Chiral model calculations in mean-field approximation find
first-order phase transition from spontaneously broken to
restored chiral symmetry

2L — [R6Bner et al., Nucl. Phys. A 814 (2008)]
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— Analyse impact of fluctuations beyond mean-field on
possible chiral phase transition
[Drews and Weise, Prog. Part. Nucl. Phys. 93 (2017)]
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Chiral nucleon-meson model

» Chiral theory of fermion doublet ¥ = (p, n) [Floerchinger and Wetterich, Nucl. Phys. A 890-891 (2012)]

» Fermions interacting via chiral boson fields ¢ = (o, ), with heavy scalar o and pion &
- 1

< =Y yuaﬂ+g(a+iy5r-ﬂ)] v + > (0H06M0+6un-6ﬂn) + U0, + AL

» Boson self-interactions via expansion of chiral invariant, y = %‘PT ¢= % (02 +7r2), around vacuum expectation value yo
plus explicit symmetry breaking term

4
U0, ) = Z (x-x0)" = Mty (o—1fr)

an
n!
» Short distance dynamics modeled by massive vector fields v,, and w,

1
AL = -¥ g, v+guTaw] V¥ — Emg(v2+wz)
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Mean-field (MF) approximation

» Replace chiral fields by their expectation values (o) and (&) =

» Introduce T and up/n and determine the grand canonical potential

1m§ (v2 + wz)

Qur = QF(T, bp, ki), v, W) + %((0), (1) =0) - 3

» Fermionic part with E = \/p? + M?(o) and dynamical nucleon mass M(c) = g{o)
i=p, nf @m?3

» Grand canonical potential evaluated at minimum yields thermodynamic observables

p2 5 1
3E ~. 1+ eE-rilT

r=+1

with fpin = MHpin — GvV F GwW
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Extended mean-field (EMF)

» Diverging vacuum term in fermionic contribution

0Qvac = 4[(271)3

— Neglected in standard mean-field analyses

» Can be computed via dimensional regularisation [Skokov et al., Phys. Rev. D 82 (2010)]

» Extended mean-field (EMF) includes vacuum contribution

(go)* | go
ar2 A

Qemr = QuF —
» Additional fluctuations beyond vacuum contribution (chiral boson and nucleon loops)

— Include using non-perturbative functional renormalization group (FRG) approach
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Functional renormalisation group (FRG)

» Initialize scale-dependent effective action I'x[®] of chiral-nucleon
meson model at kyy ~ 4nf;

» Evolution k — 0 governed by Wetterich’s flow equation
[Wetterich, Phys. Lett. B 301 (1993)]

k= = 2Tr[k s (TP@1+R) | = 3

» I'k[®] contains all fluctuations with p? = k? through regulator R (p)

» Model parameters adjusted to reproduce vacuum properties and
nuclear phenomenology

[k=o[®@] =T'[D]
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Nuclear thermodynamics
> <0>Vac =f ~93 MeV
> My =939MeV

» E/A(ng) =-16MeV, S(ng) =32MeV

» Nuclear surface tension = = 1.08(6) MeV/fm?2, Landau mass M; =0.7-0.8 My and compression modulus
K =240(20) MeV

» Nuclear liquid-gas phase transition with empirical critical parameters [Eliot et al., Phys. Rev. C 87 (2013)]
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Phase structure of symmetric nuclear matter

» (o) compared to (0)vac = fr Serves as order parameter for chiral symmetry, because M(o) = g{o)
» Mean-field: unphysical first-order phase transition to chirally restored phase (o) =0 at n=1.5ng
» Extended mean-field: vacuum contribution stabilizes order parameter

» FRG: further stabilization through additional fluctuations
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Phase structure of pure neutron matter
» Similar results for pure neutron matter
— First-order phase transition converted to smooth crossover at large densities
» Model adjusted to low-density properties, potential expanded around yo = 1/2(0)3ac =1/2 ff

— For small (o) /f; model no longer applicable

» In FRG (o)/f; stays around 40% until n ~ 6 ng (central densities in heavy neutron stars!)
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Further results
» Similar behaviour in chiral quark-meson models (with Polyakov loop)

— Chiral restoration seen in mean-field approximation avoided by vacuum fluctuations and in FRG
[Zacchi and Schaffner-Bielich, Phys. Rev. D 97 (2018)] [Gupta and Tiwari, Phys. Rev. D 85 (2012)]

» Good agreement with pure neutron matter E/A from ChEFT calculations (left)
[Drischler, Hebeler and Schwenk, Phys. Rev. Lett. 122 (2019)]

» In chiral limit m; — 0 crossover turns into second-order phase transition (right)
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Neutron stars

» Recent multimessenger measurements:

> General relativistic Shapiro time delays

» NICER X-ray measurements 1.00k %‘/ﬂ 1
. 68%
» Gravitational waves from binary neutron star mergers 075 — IRe
C\IUU:

» Use Bayesian inference to constrain speed of sound c2 = dP/de 0.50F i
inside neutron stars 0.25k ]
[LB, Weise and Kaiser, arXiv:2208.03026 (2022)] =0
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» Strong first-order phase transition inside neutron stars M <2 M, e [MeV fm 3]

unlikely, crossover still possible

» EoS based solely on nuclear degrees of freedom cannot be ruled out

Fluctuations and phases in baryonic matter | Len Brandes 11/12



Summary

» Chiral nucleon-meson model reproduces empirical nuclear properties including liquid-gas phase transition

v

Mean-field approximation: chiral first-order phase transition at unphysically low densities

v

Extended mean-field: includes fermionic vacuum contribution

— Chiral symmetry remains spontaneously broken up to higher densities

\4

Functional renormalisation group: additional fluctuations provide an even stronger stabilization against chiral
restoration

v

Similar results for chiral quark-meson models

— Fluctuations convert chiral first-order phase transition into smooth crossover at high baryon densities
n=6n

v

Based on multimessenger measurements strong first-order phase transition unlikely in neutron stars with M <2 M,
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