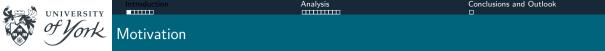
QNP Conference, Online

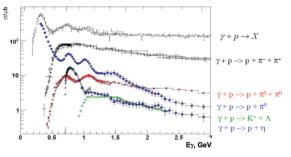
servables from Strangeness Photoproduction

on a Polarised Target at Jefferson Lab

Stuart Fegan University of York September 5th, 2022


1 Introduction

- A World of Polarisation (Observables)
- JLab, CLAS and FROST

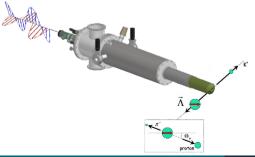

2 Analysis

- Event Selection
- Observable Extraction
- Results

3 Conclusions and Outlook

- Baryon Spectroscopy is the study of excited nucleon states
- Finding some states can be difficult in a simple "bump hunt"; many are wide and overlap
- Use alternative means; coupling strength to a reaction channel, manifestation in experimental observables, etc. to aid searches

R. Beck and U. Thoma, EPJ Web Conf 134, 04003 (2017)



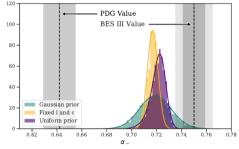
- Looking for polarisation observables on strangeness photoproduction
- Many possible channels, but this talk will focus on $K^+\Lambda$

$$\gamma p
ightarrow K^+ \Lambda
ightarrow K^+ p \pi^-$$

 16 observables for single meson photoproduction, arising from the scattering amplitudes of the interaction and the particles which carry polarisation

- "Single": σ, Σ, P, T
- Beam-Target: E, F, G, H
- Beam-Recoil: O_X, O_Z, C_X, C_Z
- **Target-Recoil:** T_X , T_Z , L_X , L_Z

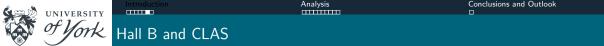
- With a polarised beam and target, can access the single and beam-target double observables
 - Single: σ, Σ, P, T
 - Beam-Target: E, F, G, H
- And more with recoil (i.e. with a self-analysing hyperon)

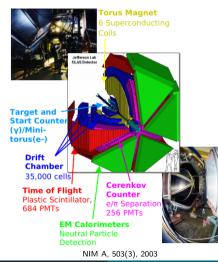

This work has two goals:

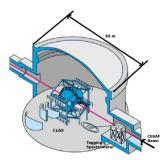
- \blacksquare Verify the beam asymmetry, Σ
- Perform first measurements in this channel of the beam-target observable, G

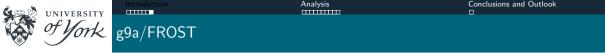
Observable	W (MeV)	θ (deg)	Data	Lab
$d\sigma/d\Omega$	1610-2390	18-162	701	ELSA
	1612 - 1896	66 - 143	1306	MAMI
	1617 - 2290	32 - 148	920	CEBAF
	1617-2108	26 - 154	90	ELSA
	1625 - 2395	27 - 154	1674	CEBAF
	1628-2533	26 - 143	1377	CEBAF
	1934-2310	13-41	78	Spring-8
Σ	1649-1906	31-144	66	GRAAL
	1721-2180	37-134	314	CEBAF
	1946-2300	13-49	45	Spring-8
	1946 - 2280	13-49	30	Spring-8
	2041-2238	18-32	4	Spring-8
р	1617-2290	26-154	233	CEBAF
	1625 - 2545	26 - 143	1497	CEBAF
	1649-1906	31 - 144	66	GRAAL
	1660-2017	41-139	12	ELSA
	1660-2280	34 - 146	30	ELSA
	1721-2180	37-134	314	CEBAF
Т	1649-1906	31-144	66	GRAAL
	1721-2180	37-134	314	CEBAF
$C_{x'}$	1678-2454	32-139	144	CEBAF
$C_{z'}$	1678-2454	32-139	146	CEBAF
O_x	1649-1906	31-144	66	GRAAL
	1721-2180	37-134	314	CEBAF
O_z	1649-1906	31-144	66	GRAAL
	1721-2180	37-134	314	CEBAF

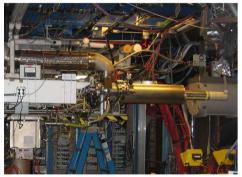
- Polarisation observable data is relatively sparse in $K^+\Lambda$
- Possible to verify the weak decay parameter, α₋, using observables and Fierz identities




D.G. Ireland et. al., Phys. Rev. Lett. 123, 182301 (2019)

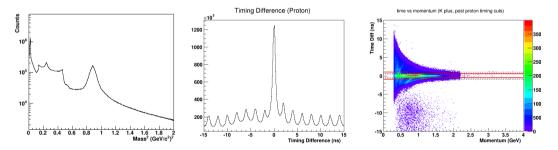

- US DoE facility, Newport News, VA
- Superconducting RF accelerator electron beams up to 6 GeV, 12 GeV since a 2017 upgrade
- Three Experimental Halls, a Fourth added in the upgrade
- Tagged real photon beam facility available in the 6 GeV era in Hall B, using a secondary bremsstrahlung photon beam





- CEBAF Large Acceptance Spectrometer (1995-2012)
- Multi layered and segmented
- Toroidal magnetic field

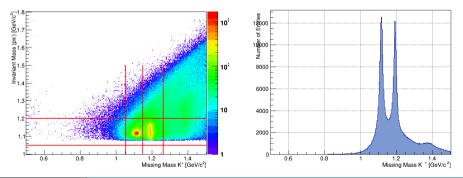
- Data from g9a run period: November 2007 to February 2008
- Linearly and circularly polarised photon beams on a longitudinally polarised target
- Polarisation direction regularly flipped during run
- Nine coherent peak settings in linear polarisation, spanning energy range 0.7 to 2.3 GeV



In this case, the reduced cross section can be expressed as:

$$\frac{d\sigma}{d\Omega} = \sigma_0 \{ 1 - P_{lin} \Sigma \cos(2\phi) + P_z(P_{lin} Gsin(2\phi)) \}$$

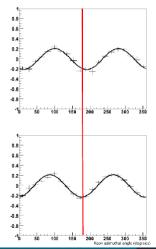
- Initial particle ID via combination of charge and time-of-flight mass
- Select candidate Protons and Kaons
- Apply photon-to-particle timing difference cuts eliminate misidentification



Select channel of interest:

$$\gamma p
ightarrow K^+ \Lambda
ightarrow K^+ p \pi^-$$

- Non exclusive selection reconstruct pion from detected proton and kaon
- Hyperons identified via kaon missing mass and proton pion invariant mass



- Binned fitting on asymmetries of two states of beam polarisation (PARA and PERP)
- Technique has been extensively employed in the JLab N* program and similar experiments worldwide
- Recall that on a linpol beam and a longitudinally polarised target:

 $\frac{d\sigma}{d\Omega} = \sigma_0 \{ 1 - P_{lin} \Sigma cos(2\phi) + P_z(P_{lin} Gsin(2\phi)) \}$

 A cos(2φ) + sin(2φ) fit to a PARA/PERP asymmetry can be used to extract Σ and G for each state of target polarisation

- Binned asymmetry fitting relies on a number of assumptions
- In lower statistics channels, or datasets where PARA and PERP have large variations between them in flux, polarisation, etc., reliable observable extraction is more challenging
- Using a maximum likelihood approach, we can extract observables event-by-event, and better account for variation between polarisation states
- We can define the likelihood function for each event as:

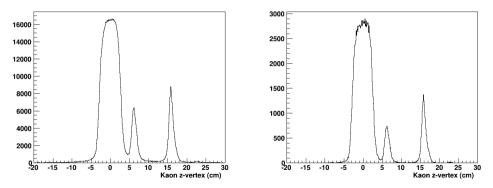
$$L_i = c_i [1 - P_{lin,i} \Sigma cos(2\phi_i) + P_{z,i}(P_{lin,i} Gsin(2\phi_i))] A$$

And extract observables by maximising the log-likelihood function:

$$\log L = b + \sum_{i} \log[1 - P_{lin,i} \Sigma cos(2\phi_i) + P_{z,i}(P_{lin,i} Gsin(2\phi_i))]$$

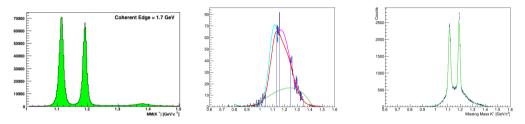
- Parameters extracted from cos(2\$\varphi\$) + sin(2\$\varphi\$) fits are the free proton value, diluted with a carbon contribution (and beam and target polarisations)
- i.e. for the Σ observable, we actually measure $P_{\gamma}\Sigma_{Butanol}$, from which we can estimate the free proton value

$$P_{\gamma}\Sigma_{Proton} = rac{1}{N_{Proton}} (N_{Butanol}P_{\gamma}\Sigma_{Butanol} - N_{Carbon}P_{\gamma}P_{\sigma}\Sigma_{Carbon})$$


• For G, carbon in the target is unpolarised and we measure $P_{\gamma}P_{Target}G_{Butanol}$, estimating the free proton value via;

$$P_{\gamma}P_{Target}G_{Proton} = rac{N_{Butanol}}{N_{Proton}}(N_{Butanol}P_{\gamma}P_{Target}G_{Butanol})$$

- The 'N' terms represent event yields per bin corresponding to the relevant material
- These must be estimated for Carbon and Proton...

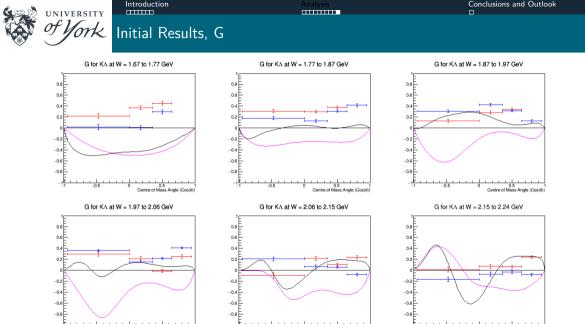

FROST target contains Butanol (left), Carbon (centre) and Polythene (right)
 Resolvable from Kaon z-vertex after particle and channel identification

 Only Butanol is polarised, other targets used to account for nuclear backround and dilution effects of unpolarised nuclei in butanol

S. Fegan

- Contolling systematic uncertainties, particularly on a measurement of G, requires a robust method of accounting for Carbon
- We know from data on proton targets (left) that shape under the hyperon peaks on butanol (right) is almost entirely from bound nucleon effects
- Parameterise, use to estimate amount of Carbon events in each bin on Butanol

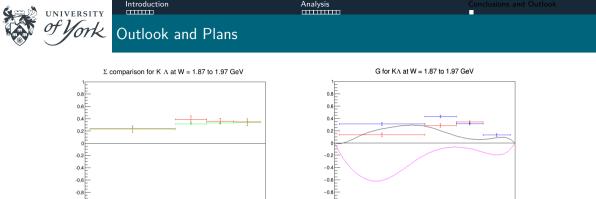
- Following slides show results from the binned asymmetry technique for the Σ and G observables, on $K^+\Lambda$
- Red points positive target polarisation, blue points negative
- Σ results are compared to rebinned CLAS g8b results (green points, Paterson, et. al. Phys. Rev. C75, 2016)
- *G* is compared to Bonn-Gatchina (pink line) and Jülich Bonn (black line) model predictions
- Disclaimer: VERY Preliminary results!!!!!!!!



ONP 2022

September 5th, 2022

17/19


S. Fegan

QNP 2022

September 5th, 2022

S. Fegan

- Preliminary measurement of the G observable has been made on FROST data
- Possible on both $K^+\Lambda$ and $K^+\Sigma$ channels

Centre of Mass Angle (Cos(0))

 Applying maximum likelihood technique to extract G over all polarisation states, explore possibility of measuring target-recoil observables

Centre of Mass Angle (Cos(0))

-0.5