QNP2022, 05-09 / Sep / 2022

Search for the "KNN" bound state produced via in-flight $d(K^2, \Lambda p)\pi^2$ reaction

Rie MURAYAMA RIKEN

For the J-PARC E31 collaboration

Kaonic nuclei "KbarNN"

- Nuclear system with Kbar mesons.
- Based on Strong KbarN (I=0) attraction.

Excited hyperon $\Lambda(1405)$ as KbarN quasi-bound state

- Kbar meson should bound in a nucleus with large binding energy.
- "KbarNN" is the simplest Kaonic nucleus to investigate.

Expected as

- "Cold and Dense" state.
- Anti-quark in matter.

Good probe for low energy QCD.

Phys. Lett. B 590 (2004) 51

Theories and experiments on "KNN"

• EI5 at KI.8BR J-PARC

$^{3}\text{He}(K^{-},\Lambda p)n$

•	E27 at KI.8 J-PARC PTEP(2015)021D01.
	d(π+, K+)Λp / Σ ^o p

Inverse reaction dK⁻ $\rightarrow \Lambda p\pi^-$ has be taken at K1.8BR.

• DISTO PRL104(2010)132502 Intermediate N* \rightarrow pK+? $pp \rightarrow p \wedge K^+$

• FINUDA PRL94(2005)212303 Multi-NA processes? $(K_{stop}^+, \Lambda p)$

Result of J-PARC EI5

The advantage is the q dependence to understand background processes.

$d(K^{-}, \Lambda p)\pi^{-}$ reaction

Experimental Setup at K1.8BR

Event selections

• $pp\pi$ event selection in CDS.

 Λ→pπ⁻ pairs selection: Likelihood method on closest distance approach.

 Missing pion selection:
χ² method on kinematical refit to conserve energy-momentum. Square of Ap missing mass after applying all the event selections

Λp distribution

Event distribution of $\Lambda p\pi^{-}$ final state

kinematical Degree-of-Freedom = 5

9 (3 on-shell particles) - 4 (energy-momentum conservation and ϕ symmetry)

3 (*m***,** *q***)-plots** are **more than sufficient** to identify the event kinematics

We can specify reaction dynamics by these 3 plots
m : invariant mass of a pair
q : momentum transfer to the pair

Knowledge from reaction dynamics (m, q)

Knowledge from reaction dynamics (m, q)

One nucleon reaction: K⁻ n $\rightarrow \Lambda \pi^-$ (1/2)

 Spectator-proton w/ large p fires trigger. Tail component of Fermi-motion affect the distribution.

Effect of large Fermi-momentum tail on $\Lambda\pi$ distribution MC w/o D-state MC w/ D-state

One nucleon reaction: K⁻ n $\rightarrow \Lambda \pi^-$ (2/2)

- W/ Correction of spectator-proton momentum, data of interested region is mostly explained w/ 1N reaction.
- Difference of proton momentum is under investigation.

Summary

 E31 collaboration is investigating "KbarNN" bound state using d(K-, Λp)π- reaction with the confirmation of all the kinematical freedoms.

• Reaction dynamics are determined by the momentum transfer and invariant mass of Λp , $\Lambda \pi^-$ and $p\pi^-$ systems. The reaction processes, one nucleon reaction $Kn \rightarrow \Lambda \pi^-$, two nucleon reaction $Kp \rightarrow Kp$, $Kn \rightarrow \Lambda \pi^-$, none-mesonic Y* production $Kd \rightarrow \Sigma(1385)p$, are clearly identified.

• "KbarNN" interested region is mostly explained with one nucleon reaction $Kn \rightarrow \Lambda \pi^-$ including large momentum Fermi-motion tail and correction of spectator-proton momentum distribution. Difference of proton momentum is under investigation.