On the *Z_{cs}***(3985) and** *X***(3960) states**

Towards HQSS and SU(3) multiplet descriptions

Miguel Albaladejo (IFIC)

9th International Conference on Quarks and Nuclear Physics. Sept. 6, 2022

Outline

1 Introduction

2 Interactions

3 X(3960)

HQSS & SU(3) multiplets

5 Z_{cs}(3985) and Z_c(3900)

Introduction			
•			

Quark model in the charmonium sector

- $\chi_{cJ}(1P)$ well established, "very CQM model" state.
- X(3872) discovered by Belle [PRL,91,262001('03)] (also 2003!)
 - $J^{PC} = 1^{++}$ and $\Gamma \simeq 1$ MeV established by LHCb (*e.g.* [JHEP,08(2020),123]).
- $\chi_{cl}(2P)$ Not established. Influence of open thresholds? Is X(3872) a molecular states?
- Z_c states have I = 1, clearly "tetraquarks" ($c\bar{c}u\bar{d},...$)
- Many theoretical and lattice and experimental works: can't cite them properly here! (many references in [2207.08653])

Interactions		
•		

HQSS and flavour SU(3) LO lagrangian

[Grinstein et al., NP,B380('92); Alfiky et al., PL,B640('06), ...]

- LO lagrangian (S-wave contact interactions):

$$\begin{split} \mathcal{L}_{4H} &= \quad \frac{1}{4} \operatorname{Tr} \left[\bar{H}^{(Q)a} H^{(Q)}_{b} \gamma_{\mu} \right] \operatorname{Tr} \left[H^{(\bar{Q})c} \bar{H}^{(\bar{Q})}_{d} \gamma^{\mu} \right] \left(F_{A} \, \delta^{\, b}_{a} \delta^{\, d}_{c} + F^{\lambda}_{A} \, \vec{\lambda}^{\, b}_{a} \cdot \vec{\lambda}^{\, d}_{c} \right) \\ &+ \quad \frac{1}{4} \operatorname{Tr} \left[\bar{H}^{(Q)a} H^{(Q)}_{b} \gamma_{\mu} \gamma_{5} \right] \operatorname{Tr} \left[H^{(\bar{Q})c} \bar{H}^{(\bar{Q})}_{d} \gamma^{\mu} \gamma_{5} \right] \left(F_{B} \, \delta^{\, b}_{a} \delta^{\, d}_{c} + F^{\lambda}_{B} \, \vec{\lambda}^{\, b}_{a} \cdot \vec{\lambda}^{\, d}_{c} \right), \end{split}$$

• Only 4 constants, many ways to write the constants.

$$\begin{aligned} \mathcal{C}_{0a} &= F_{A} + \frac{10F_{A}^{\lambda}}{3}, & \mathcal{C}_{1a} = F_{A} - \frac{2}{3}F_{A}^{\lambda}, \\ \mathcal{C}_{0b} &= F_{B} + \frac{10F_{B}^{\lambda}}{3}, & \mathcal{C}_{1b} = F_{B} - \frac{2}{3}F_{B}^{\lambda}. \end{aligned}$$

	X(3960)		
	•		

 $D_s^+D_s^-$ interaction and $B^+
ightarrow D_s^+D_s^-K^+$ decay [Ji, Dong, MA, Du, Guo, Nieves, 2207.08563]

• Scattering amplitude:
$$T(E) = \frac{V}{1 - V G(E)}$$

• $V = 4m_{D_s}^2 \frac{C_{0a} + C_{1a}}{2}$

- G loop functions, once-subtracted, $G(E_{th}) = G_{\Lambda}(E_{th})$
- Simple production model:

$$T_B(E) = P + PG(E)T(E) = P\frac{1}{1 - VG(E)}$$

•
$$\frac{\mathrm{d}\Gamma}{\mathrm{d}E} = \frac{1}{(2\pi)^3} \frac{k\,p}{4m_B^2} \,|T_B(E)|^2$$

	X(3960)		
	•		

 $D_s^+D_s^-$ interaction and $B^+
ightarrow D_s^+D_s^-K^+$ decay [Ji, Dong, MA, Du, Guo, Nieves, 2207.08563]

• Scattering amplitude:
$$T(E) = \frac{V}{1 - V G(E)}$$

• $V = 4m_{D_s}^2 \frac{C_{0a} + C_{1a}}{2}$

• G loop functions, once-subtracted, $G(E_{th}) = G_{\Lambda}(E_{th})$

• Simple production model:

$$T_B(E) = P + PG(E)T(E) = P\frac{1}{1 - VG(E)}$$

•
$$\frac{\mathrm{d}\Gamma}{\mathrm{d}E} = \frac{1}{(2\pi)^3} \frac{k\,p}{4m_B^2} \,|T_B(E)|^2$$

- Fit: two solutions (virtual or bound), in both: $M_{X(3960)} = 3928(3) \text{ MeV}$ $2M_{D_s} - M_{X(3960)} = 8(3) \text{ MeV}$
- LHCb: M = 3956(5)(11) MeV, Γ = 43(13)(7) MeV
- [Prelovsek et al., JHEP 06,035('20)]: Bound state B = 6.2^{+2.0}_{-3.8} MeV (cf. also [Bayar, Feijoo, Oset, 2207.08490])

	Vir.	(S-I)	Bou. (S-II)		
	$\Lambda=0.5\text{GeV}$	$\Lambda = 1.0\text{GeV}$	$\Lambda=0.5\text{GeV}$	$\Lambda = 1.0 \text{GeV}$	
$C_{D_s \overline{D}_s} (\text{fm}^2)$	$-0.74^{+0.04}_{-0.04}$	$-0.46^{+0.02}_{-0.02}$	$-3.36^{+0.56}_{-1.02}$	$-0.91^{+0.05}_{-0.06}$	

	X(3960)		
	•		

 $D_s^+D_s^-$ interaction and $B^+
ightarrow D_s^+D_s^-K^+$ decay [Ji, Dong, MA, Du, Guo, Nieves, 2207.08563]

• Scattering amplitude:
$$T(E) = \frac{V}{1 - V G(E)}$$

• $V = 4m_{D_s}^2 \frac{C_{0a} + C_{1a}}{2}$

• G loop functions, once-subtracted, $G(E_{th}) = G_{\Lambda}(E_{th})$

• Simple production model:

$$T_B(E) = P + PG(E)T(E) = P\frac{1}{1 - VG(E)}$$

•
$$\frac{\mathrm{d}\Gamma}{\mathrm{d}E} = \frac{1}{(2\pi)^3} \frac{k p}{4m_B^2} |T_B(E)|^2$$

- Fit: two solutions (virtual or bound), in both: $M_{X(3960)} = 3928(3) \text{ MeV}$ $2M_{D_s} - M_{X(3960)} = 8(3) \text{ MeV}$
- LHCb: M = 3956(5)(11) MeV, Γ = 43(13)(7) MeV
- [Prelovsek et al., JHEP 06,035('20)]: Bound state B = 6.2^{+2.0}_{-3.8} MeV (cf. also [Bayar, Feijoo, Oset, 2207.08490])

	Vir.	(S-I)	Bou. (S-II)		
	$\Lambda=0.5\text{GeV}$	$\Lambda=1.0\text{GeV}$	$\Lambda=0.5\text{GeV}$	$\Lambda = 1.0 \text{GeV}$	
$C_{D_s \overline{D}_s} (\text{fm}^2)$	$-0.74^{+0.04}_{-0.04}$	$-0.46^{+0.02}_{-0.02}$	$-3.36^{+0.56}_{-1.02}$	$-0.91^{+0.05}_{-0.06}$	

	HQSS & SU(3) multiplets	
	•0	

Fixing all constants [Ji, Dong, MA, Du, Guo, Nieves, 2207.08563]

• X(3960): fixes $C_{D_s \overline{D}_s} = (C_{0a} + C_{1a})/2$ (as previously seen)

Z_c(3900): fixes V = C_{1a} - C_{1b}
 Assume virtual state M = 3813⁺²⁸₋₂₁ MeV ([2201.08253; 1512.03638] from a fit to BESIII data)

• X(3872): fixes
$$\begin{cases} C_{0X} = (C_{0a} + C_{0b})/2, \\ C_{1X} = (C_{1a} + C_{1b})/2 \end{cases}$$

Experimental information:

[LHCb, 2204.12597]
$$R_{\chi(3872)}^{exp} = 0.29(4)$$

[LHCb, PR,D 102,092005('20)] $B_{\chi(3872)}^{exp} = [-150, 0] \text{ keV} \longleftarrow M_{\chi(3872)}^{exp} = 3871.69^{+0.00}_{-0.04} + 0.05 \text{ MeV}$

• Theoretically: [0911.4407; 1210.5431; 1504.00861]

$$V = \frac{1}{2} \begin{pmatrix} C_{0X} + C_{1X} & C_{0X} - C_{1X} \\ C_{0X} - C_{1X} & C_{0X} + C_{1X} \end{pmatrix}, \quad T = (\mathbb{I} - VG)^{-1}V.$$

$$R_{X(3872)} = \frac{\hat{\Psi}_{n} - \hat{\Psi}_{c}}{\hat{\Psi}_{n} + \hat{\Psi}_{c}}, \quad \frac{\hat{\Psi}_{n}}{\hat{\Psi}_{c}} = \frac{1 - (2m_{D} + m_{D^{*} -})G_{2}(C_{0X} + C_{1X})}{(2m_{D} + m_{D^{*} -})G_{2}(C_{0X} - C_{1X})} = \frac{(2m_{D}0m_{D^{*}0})G_{1}(C_{0X} - C_{1X})}{1 - (2m_{D}0m_{D^{*}0})G_{1}(C_{0X} + C_{1X})},$$

• SU(3) and HQSS breaking corrections (30%) are taken into account for the LECs

	HQSS & SU(3) multiplets	
	00	

Predictions (complete multiplet): X(3960) as bound [Ji, Dong, MA, Du, Guo, Nieves, 2207.08563]

With the four LECs (C_{0a} , C_{0b} , C_{1a} , C_{1b}) fixed, poles can be looked for in every sector.

O O O O O O O O O O O O O O O O O O O		HQSS & SU(3) multiplets	
		00	

Predictions (complete multiplet): X(3960) as virtual [Ji, Dong, MA, Du, Guo, Nieves, 2207.08563]

With the four LECs (C_{0a} , C_{0b} , C_{1a} , C_{1b}) fixed, poles can be looked for in every sector.

				Z _{CS} (3985) and Z _C (3900)	
0	0	0	00	0000	0

A closer look to $Z_c(3900)$ and $Z_{cs}(3985)$ [Du, MA, Guo, Nieves, PR,D105,074018('22)]

- $\langle D\bar{D}^*; 1(1^{+-}) | \hat{T} | D\bar{D}^*; 1(1^{+-}) \rangle = \langle D_s \bar{D}^*; \frac{1}{2}(1^+) | \hat{T} | D_s \bar{D}^*; \frac{1}{2}(1^+) \rangle = C_{1a} C_{1b} \equiv C_{1Z}$
- Constant V and single channel: only virtual or bound states (pole condition $V^{-1} = G$)
- Extension of the previous approach by:

 $\begin{array}{c} \textcircled{1} \quad \text{Coupled channels:} \begin{cases} I = 1 & \left(\frac{1}{\sqrt{2}} \left[D\bar{D}^* - D^*\bar{D}\right], J/\psi \pi\right) \\ I = \frac{1}{2} & \left(\frac{1}{\sqrt{2}} \left[D_s\bar{D}^* - D^*_s\bar{D}\right], J/\psi K\right) \end{cases} \text{ (also necessary for } e^+e^- \rightarrow J/\psi\pi\pi \text{ data)} \\ \textcircled{2} \quad \text{Energy dependence:} \ C_{1Z} \rightarrow C_{1Z} + b \frac{s - E^2_{\text{th}}}{2E_{\text{th}}} \end{cases}$

• Production mechanism for Y ightarrow D⁰ $ar{D}^{*-}$ π^+

3960) HQSS & SU(3) multiplets Z _{CS} (3985) and Z _C (3900) Conclusions		
• • • • • • • • • • • • • • • • • • •		

A closer look to $Z_c(3900)$ and $Z_{cs}(3985)$ [Du, MA, Guo, Nieves, PR,D105,074018('22)]

- $\langle D\bar{D}^*; 1(1^{+-}) | \hat{T} | D\bar{D}^*; 1(1^{+-}) \rangle = \langle D_s \bar{D}^*; \frac{1}{2}(1^+) | \hat{T} | D_s \bar{D}^*; \frac{1}{2}(1^+) \rangle = C_{1a} C_{1b} \equiv C_{1Z}$
- Constant V and single channel: only virtual or bound states (pole condition $V^{-1} = G$)
- Extension of the previous approach by:

 $\begin{array}{c} \textcircled{1} \quad \text{Coupled channels:} \begin{cases} I = 1 & \left(\frac{1}{\sqrt{2}} \left[D\bar{D}^* - D^*\bar{D}\right], J/\psi \pi\right) \\ I = \frac{1}{2} & \left(\frac{1}{\sqrt{2}} \left[D_s\bar{D}^* - D^*_s\bar{D}\right], J/\psi K\right) \end{cases} \text{ (also necessary for } e^+e^- \rightarrow J/\psi\pi\pi \text{ data)} \\ \textcircled{2} \quad \text{Energy dependence: } C_{1Z} \rightarrow C_{1Z} + b \frac{s - E^2_{\text{th}}}{2E_{\text{th}}} \end{cases}$

• Production mechanism for Y \rightarrow J/ $\psi\,\pi^+\,\pi^-$

$$\begin{aligned} \overline{|\mathcal{A}_{1}(s,t)|^{2}} &= |\tau(s)|^{2}q_{\pi}^{4}(s) + |\tau(t)|^{2}q_{\pi}^{4}(t) + \frac{3\cos^{2}\theta - 1}{2} \left[\tau(s)\tau(t)^{*} + \tau(s)^{*}\tau(t)\right] q_{\pi}^{2}(s)q_{\pi}^{2}(t) \\ &+ \frac{1}{2} \left\{ |\tau'(s)|^{2} E_{\pi}^{2}(s) + |\tau'(t)|^{2} E_{\pi}^{2}(t) + \left[\tau'(s)^{*}\tau'(t) + \tau'(s)\tau'(t)^{*}\right] E_{\pi}(s) E_{\pi}(t) \right\} \\ &\tau(s) = \sqrt{2} l(s) T_{12}(s) + \alpha \qquad \tau'(s) = \frac{h_{S}}{h_{D}} \sqrt{2} l(s) T_{12}(s) \end{aligned}$$

				Z _{CS} (3985) and Z _C (3900)	
0	0	0	00	0000	0

Fit to data [Du, MA, Guo, Nieves, PR,D105,074018('22)]

Fitted data:

- J/ $\psi\pi^-$ distribution in $e^+e^- \rightarrow J/\psi\pi^+\pi^-$ [BESIII, PRL,119('17)]
- D^0D^{*-} distribution in $e^+e^- \rightarrow D^0D^{*-}\pi^+$ [BESIII,PR, D92('15)]
- $e^+e^- \rightarrow (D^{*0}D^-_s + D^0D^{*-}_s)K^+$ [BESIII, PRL,126('21)]
- Some production/background/normalization constants are also fitted (not shown here)
- Four schemes:
 - A or B: b = 0 or free
 - I or II: $h_s = 0$ or not (D- or S- and D-waves)

Scheme	$D_1 D^* \pi$	$a_2(\mu)$	χ^2/dof	C ₁₂ [fm ²]	C_Z [fm ²]	<i>b</i> [fm ³]
14		-2.5	1.62	0.005(1)	-0.226(10)	0*
IA	D	-3.0	1.62	0.005(1)	-0.177(6)	0*
ПА	C+D	-2.5	1.83	0.006(1)	-0.217(10)	0*
		-3.0	1.83	0.006(1)	-0.171(6)	0*
ID	D	-2.5	1.24	0.007(4)	-0.222(6)	-0.447(44)
ю	D	-3.0	1.21	0.008(1)	-0.177(4)	-0.255(30)
IIB	S+D	-2.5	1.37	0.005(1)	-0.203(7)	-0.473(45)
		-3.0	1.27	0.005(1)	-0.171(5)	-0.270(30)

	Z _{cs} (3985) and Z _c (3900) Conclus	
	0000	

Fit to data (scheme A) [Du, MA, Guo, Nieves, PR,D105,074018('22)]

		Z _{cs} (3985) and Z _c (3900)	
		0000	

Fit to data (scheme B) [Du, MA, Guo, Nieves, PR,D105,074018('22)]

								Z _{cs} (3985 ○○○●	5) and Z _C (390)	D) (
Z _c	^{*)} ar	nd $Z_c^{(*)}$	poles (r	Du, MA, Guo, N	ieves, PR,D1	105,074018('22)	1				
		D.D* 7	a.(11)	Z _c [M	eV]	Z _{cs} [M	eV]	Z_c* [M	eV]	Z _{cs} [*] [M	eV]
		$D_1 D_n$	$u_2(\mu)$	Mass	Γ/2	Mass	Γ/2	Mass	Γ/2	Mass	Γ/2
	1.4		-2.5	3813 ⁺²¹ _28	vir.	3920 ⁺¹⁸ 6	vir.	3962 ⁺¹⁹	vir.	4069^{+12}_{-16}	vir.
	IA		-3.0	3812 ⁺²² _26	vir.	3924 ⁺¹⁹ _23	vir.	3967 ⁺¹⁹ _22	vir.	4078^{+17}_{-13}	vir.
		CLD.	-2.5	3799^{+24}_{-33}	vir.	3907 ⁺²² - 31	vir.	3949^{+22}_{-30}	vir.	4057^{+20}_{-28}	vir.
	IIA	S+D	-3.0	3798^{+25}_{-31}	vir.	3911 ⁺¹⁷ -27	vir.	3955^{+22}_{-27}	vir.	4067^{+19}_{-25}	vir.
	ID		-2.5	3897^{+4}_{-4}	37^{+8}_{-6}	3996 ⁺⁴	37^{+8}_{-6}	4035^{+4}_{-4}	37_6	4137^{+4}_{-4}	36 ⁺⁷ _6
	IB		-3.0	3898^{+5}_{-5}	38^{+10}_{-7}	3996^{+5}_{-6}	35^{+9}_{-6}	4035^{+4}_{-5}	34_6	4136^{+5}_{-6}	33 ⁺⁸
	шр	CLD.	-2.5	3902^{+6}_{-6}	38+9	4002^{+6}_{-6}	38+9	4042^{+5}_{-5}	38+9	4144^{+5}_{-6}	37^{+9}_{-7}
	пв	S+D	-3.0	3902 ⁺⁵	37 ⁺⁹	4000+5	35 ⁺⁸	4039+5	35+8	4140 ⁺⁵	33 ⁺⁸

• Z_c exp.:

M = 3881.2(4.2)(52.7) MeV $\Gamma/2 = 25.9(2.3)(18.0) \text{ MeV}$

• Z_{cs} exp.: M = 3982.5(2.6)(2.1) MeV $\Gamma/2 = 6.4(2.6)(1.5) \text{ MeV}$

- Both schemes (A and B)
- Including SU(3) breaking effects
- [Yang et al., PR,D103('21): Z_{cs} and distribution]
- [Ikeno, Molina, Oset, PL,B814('21)] (Z_{cs} threshold effect)
- [JPAC, PL,B772('17)] Several possibilities for Z_c

		Conclusions
		•

Summary and conclusions

- We have considered $D_{(s)}^{(*)}\overline{D}_{(s)}^{(*)}$ interactions with HQSS and SU(3) light-flavour symmetry.
- The X(3960) structure in LHCb data on $B^+ \rightarrow D_s^+ D_s^- K^+$ can be explained with a **bound or virtual** state.
- The experimental information coming from X(3960), X(3872), and (a virtual) $Z_c(3900)$ allows to fix the four constants appearing in the LO lagrangian.
- Predictions are made based on these constants for multiplet partners of these states in other sectors
- Considering a generalization of the interactions, the BESIII data for the Z_c and Z_{cs} states can be well reproduced, being Z_c and Z_{cs} flavour partners.