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This talk

1 ) Probably over-simplified 4 | | am not a data scientist

introduction to Machine Learning
5 ) There are so many exciting

2 | ML for Nuclear Physics developments that | cannot cover in
30 minutes

3 | Interpretable Machine Learning

Artificial Intelligence and Machine Learning will be a core component of new discoveries in Nuclear Physics



Al-based technologies
are everywhere

Self Driving Fraud Drug

Cars Detection Discovery

oo i ik

Pandemic response Recommendation
Systems

COVID-19 Netflix
Amazon




What is Machine Learning?



Machine

Learning

Understanding and building
methods that ‘learn’ a set of
tasks

Machine Learning

Supervised Learning

Regression

Classification

Clustering

Unsupervised
Learning

Dimensionality
Reduction

Reinforcement
Learning

Real-time decisions




Supervised
Machine

Learning

Labeled training data

Let specific ML algorithm learn
and deduce patterns in the
datasets

Supervised Learning

Regression

Classification

Calibration

Image Classification

Particle Identification




Unsupervised
Machine

Learning

Unlabeled training data

Find patterns and relationships
in datasets without any prior
knowledge of the system

Clustering

Track finding in TPCs

Unsupervised

Dimensionality
Reduction

Principal Component
Analysis




Reinforcement
Learning

Inspired by behavioral
psychology

Actions are learned to
maximize reward

Reinforcement
Learning

Real Time Decisions

Robot Navigation

Control Optimization

Skill Acquisition




Data Science Pipeline

Data Source

Data

Preparation

ML Application

Training Tools

Results

Real or synthetic
Quality
Dimensionality
Format

Size
Time-to-acquire

Data cleaning
Restructuring
Correlations
Visualization

Classification
Regression
Clustering

Feature Extraction

Cross validation

Hyperparameter
optimization

Predictions
Confidence level
Explainability

Uncertainty
Quantification



Monitoring

Streaming
@ Readout
Calibration

Traditional Nuclear . _
Physics workflow i

Al and ML techniques are now actively being
used in all aspects of Nuclear Physics

Spatial and
momentum Visualization

Distributions and global
analysis

TYPICAL NP DISCOVERY PARADIGM, FROM A. BOEHNLEIN



Parallel Talks from Monday

Jin Huang

Utilizing Al/ML on FPGAs and ASICs to use with
streaming readout data acquisition

Daniel Hackett
Generative models for lattice quantum field theory

Marco Battaglieri

Al-based algorithms to unfold detector effects and
reveal interaction mechanisms at the vertex level

Diana McSpadden
Motivations for ML use in Experimental Physics

Cristiano Fanelli

Utilizing Al to aid in detector design with
applications
to the Electron lon Collider
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ML for Experimental Nuclear Physics

Online Data Quality Monitoring: Hydra at Jefferson Lab

Traditional method:

Shift takers monitor hundreds of histograms for all of the detector
subsystems 24/7 during an experiment. Different shift takers look
at the monitoring plots at different time intervals.

Hydra:

Re-train Google's InceptionV3 with labeled monitoring plots from
previous experiments. Hydra evaluates all images and provides
classification and confidence every 30 seconds. Can interface
with alarm handler to audibly alert shift crew of problems.

Results:

Hydra discovers issues in monitoring plots faster and more reliably
than humans.
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ML for Nuclear Theory

Reducing cost of LQCD calculations

Computation of observables in LQCD is
computationally expensive

Requires the inversion of a large matrix

ML methods are being developed to take cheaper inversions with low
precision, and then recover the full precision propagator while saving
computing resources
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ML for Accelerator Physics

Detection of Errant Beam Pulses at ORNL
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Interpretability + Uncertainty
Quantification



Trustworthiness

The more you can understand
how your ML system actually
works, the more reason you
might have to trust it

Max Tegmark, MIT



Complexity vs Accuracy Trade Off

Interpretable or Accurate? Choose one!

Can make simple models more
accurate, and complex models |
more interpretable Simple Model

Complex
Model

Interpretable Accurate
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What happens if we don't fully understand our model?

The Rise and Fall of Knight Capital — Buy High,
Sell Low. Rinse and Repeat.
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The GlueX Central Drift Chamber is used for charged particle
identification. Poorly calibrated detector would negatively affect
all physics analyses.

In 2012, software error lost ~$10M per minute for 44 minutes
before it was noticed.
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Interpretability

Understand model predictions and stability

How does a model come up with its
prediction?

Even the simplest ML model architectures can be 'black
boxes’

Benefits to nuclear physicists and data
scientists

Nuclear physicists are more likely to implement a model
they trust

From a data scientist’'s perspective, explanations can help
better understand problem, the data, and when and why a
model might fail

Dependent variable (y)
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Trustworthiness

Implementing ML based systems

for physics applications will
interpretability

Much easier to adopt ML
techniques if we understand

model behavior

Imagine trying to convince a detector expert to
implement a ML system to control a detector
during an experiment without validating its
behavior in all circumstances (even if its rarel)
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GradCAM with Hydra

Gradient Class Activation Map

What region of the image is
important to the model when making

the classification?

LEFT: MONITORING PLOT FROM BARREL
SILICON VERTEX TRACKER IN CLAS12. RIGHT:
HEAT MAP INDICATING REGION OF
IMPORTANCE FOR CLASSIFICATION.



Interpretability

GradCAM + Siamese Neural
Network

Can we distinguish heat maps produced from
normal and errant beam pulses?

Can we associate heat maps from specific fault
types to specific equipment failures?

Red indicates region of high importance, blue
indicates region of low importance.
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Shapley Values

Lloyd Shapley, Nobel Prize in Economics 2012

How does an individual input feature contribute
to a prediction?

Based on ‘fairness' properties from Game Theory
Model agnostic, but can be slow to evaluate

hypoxia fold risk

Red features push the risk higher base value hypoxemia fold risk Green features push the risk lower
0.5 1 2 24 4 8

Succinylcholine | Peak pressure | SpO2 | Tidal volume | Height/weight | Pulse = Sevoflurane = Respiration rate = abalation in proc text

0.125 0.25

—

Feature impact

Now

A) EXPLAINED RISK OF HYPOXEMIA IN THE NEXT 5
MINUTES DURING A SURGICAL PROCEDURE. B) EXPLAINED
RISK EVOLVING OVER TIME.



Uncertainty Quantification

Active area of research in Al

Complicated by noisy data, limited data, hyperparameters,
overparametrization, sampling errors, etc

Critical for control related decisions

Especially when it comes to maintaining safe operating conditions of an
accelerator

see Diana McSpadden's talk for UQ implementation at ORNL and
FermilLab

Need for desighing human-interpretable
explanations and developing comprehensive
evaluation metrics
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Take home messages

1

DOE has recognized the importance and benefits
of implementing Al/ML techniques in Nuclear
Physics

Numerous exciting applications and avenues to
explore in experiment, theory, and accelerator
flelds

We have a unique opportunity to collaborate
with data scientists to implement ML systems
from the start at new facilities like the EIC and

FRIB
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Community ldentified Needs for Al Research in NP
Al for Nuclear Physics Workshop, Jefferson Lab

Workforce development

Retain talented students in Al-related fields, have community of
researchers knowledgeable in Al technologies, strong collaborations
between NP researchers and experts in Al/ML/Data Science

Uncertainty Quantification

Evaluation and comparison of uncertainty predictions using different
modalities is required for widespread use in NP

Comprehensive Data Management

Establish standards for processing data, application of theoretical March 4-6, 2020
assumptions, and treatment of systematic uncertainties

"

Adequate Computing Resources

Al techniques are computationally intensive, will require access to GPU Jefferdon Lab
computing and disk storage at appropriate scales wwwlab.org/conferencelAte0ad
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EPSCI at Jefferson Lab

Experimental Physics Software and Computing Infrastructure

davidl@jlab.org

@SEPSCI

EXPerimenTtTalL PHYSICS SOFTware
anD COMPUTING INFrasTrucTure
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Data Science Department at Jefferson Lab

schram@jlab.org
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